MTHSC 3190 Section 5.25

Kevin James

Kevin James MTHSC 3190 Section 5.25

DEFINITION

Let A, B and C be sets. Suppose that

$$f: A \rightarrow B$$
 and $g: B \rightarrow C$.

Then we define a new function $g \circ f : A \to C$ called the composition of g with f by

$$g \circ f(x) = g(f(x)).$$

QUESTION

Is $g \circ f$ as defined above well defined?

EXAMPLE

Suppose that

$$A = \{1, 2, 3, 4\}$$

$$B = \{5, 6, 7\}$$

$$C = \{8, 9, 10, 11\}$$

$$f = \{(1, 6), (2, 6), (3, 5), (4, 7)\}$$

$$g = \{(5, 8), (6, 10), (7, 11)\}$$

Then $g \circ f =$

Note

Note that it is often the case that only one of $f \circ g$ and $g \circ f$ are defined and even if both are defined they are typically different functions.

EXAMPLE

Let

$$A = \{0, 1, 2, 3, 4\}$$

$$f = \{(0, 1), (1, 2), (2, 0), (3, 0), (4, 2)\}$$

$$g = \{(0, 4), (1, 1), (2, 3), (3, 0), (4, 2)\}$$

Then $f \circ g = _$ _____ $g \circ f = _$ _____

PROPOSITION

Let A, B, C and D be sets and let $f:A \to B,\,g:B \to C$ and $h:C \to D.$ Then,

$$(h \circ g) \circ f = h \circ (g \circ f).$$

Proof.

PROVING FUNCTION EQUALITY

In order to show that two functions f, g are equal, we must prove the following:

- **1** The functions have the same domain $(\operatorname{dom}(f) = \operatorname{dom}(g))$.
- Prove the element of the common domain the two functions take the same value (∀x ∈ dom(f) = dom(g), f(x) = g(x)).

DEFINITION (IDENTITY FUNCTION)

Let A be a set. The identity function $id_A : A \to A$ on A is defined by $id_A(x) = x$.

PROPOSITION

Let A and B be sets. Let $f : A \rightarrow B$. Then,

$$f \circ id_A = id_A \circ f = f.$$

PROPOSITION

Let A and B be sets. Suppose that $f : A \rightarrow B$ is a bijection. Then,

$$f \circ f^{-1} = id_B$$
 and $f^{-1} \circ f = id_A$.