MTHSC 3190 Section 5.25

Kevin James

DEFINITION

Let A, B and C be sets. Suppose that

$$f: A \rightarrow B$$
 and $g: B \rightarrow C$.

Then we define a new function $g \circ f : A \to C$ called the composition of g with f by

$$g \circ f(x) = g(f(x)).$$

DEFINITION

Let A, B and C be sets. Suppose that

$$f: A \rightarrow B$$
 and $g: B \rightarrow C$.

Then we define a new function $g \circ f : A \to C$ called the composition of g with f by

$$g \circ f(x) = g(f(x)).$$

QUESTION

Is $g \circ f$ as defined above well defined?

Suppose that

$$A = \{1,2,3,4\}$$

$$B = \{5,6,7\}$$

$$C = \{8,9,10,11\}$$

$$f = \{(1,6),(2,6),(3,5),(4,7)\}$$

$$g = \{(5,8),(6,10),(7,11)\}$$

Then $g \circ f =$

Suppose that

$$A = \{1,2,3,4\}$$

$$B = \{5,6,7\}$$

$$C = \{8,9,10,11\}$$

$$f = \{(1,6),(2,6),(3,5),(4,7)\}$$

$$g = \{(5,8),(6,10),(7,11)\}$$

Then $g \circ f =$

Note

Note that it is often the case that only one of $f \circ g$ and $g \circ f$ are defined and even if both are defined they are typically different functions.

Let

$$A = \{0, 1, 2, 3, 4\}$$

$$f = \{(0, 1), (1, 2), (2, 0), (3, 0), (4, 2)\}$$

$$g = \{(0, 4), (1, 1), (2, 3), (3, 0), (4, 2)\}$$

Then
$$f \circ g = \underline{}$$
 $g \circ f = \underline{}$

Let

$$A = \{0,1,2,3,4\}$$

$$f = \{(0,1),(1,2),(2,0),(3,0),(4,2)\}$$

$$g = \{(0,4),(1,1),(2,3),(3,0),(4,2)\}$$

Then
$$f \circ g = \underline{}$$
 $g \circ f = \underline{}$

PROPOSITION

Let A, B, C and D be sets and let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$. Then,

$$(h \circ g) \circ f = h \circ (g \circ f).$$

Proof.

Proving function equality

In order to show that two functions f, g are equal, we must prove the following:

- **1** The functions have the same domain (dom(f) = dom(g)).
- 2 For each element of the common domain the two functions take the same value $(\forall x \in \text{dom}(f) = \text{dom}(g), \ f(x) = g(x)).$

Proving function equality

In order to show that two functions f,g are equal, we must prove the following:

- **1** The functions have the same domain (dom(f) = dom(g)).
- **2** For each element of the common domain the two functions take the same value $(\forall x \in \text{dom}(f) = \text{dom}(g), \ f(x) = g(x)).$

DEFINITION (IDENTITY FUNCTION)

Let A be a set. The identity function $id_A : A \to A$ on A is defined by $id_A(x) = x$.

Proving function equality

In order to show that two functions f, g are equal, we must prove the following:

- **1** The functions have the same domain (dom(f) = dom(g)).
- **2** For each element of the common domain the two functions take the same value $(\forall x \in \text{dom}(f) = \text{dom}(g), \ f(x) = g(x)).$

Definition (Identity Function)

Let A be a set. The identity function $id_A : A \to A$ on A is defined by $id_A(x) = x$.

Proposition

Let A and B be sets. Let $f: A \rightarrow B$. Then,

$$f \circ id_A = id_A \circ f = f$$
.

Proposition

Let A and B be sets. Suppose that $f: A \rightarrow B$ is a bijection. Then,

$$f \circ f^{-1} = id_B$$
 and $f^{-1} \circ f = id_A$.