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Cartesian Products

Definition (Cartesian Product)

For two nonempty sets A and B, the Cartesian product of A and B
is defined by

A× B = {(a, b) | a ∈ A; b ∈ B}.

Example

Let A = {1, 2, 3} and let B = {a, b}. Then,

A× B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.
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Mapping

Definition (Mapping)

Let A and B be two nonempty sets. A subset f of A× B is a
mapping from A to B provided that for each a ∈ A there is
precisely one b ∈ B such that (a, b) ∈ f .

Example

Let A = {1, 2, 3} and let B = {a, b}. Then,

1 f = {(1, a), (2, a), (3, b)} is a mapping.

2 g = {(1, a), (2, a), (1, b), (3, b)} is not a mapping.
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Notation

If f is a mapping from A to B, then we write

f : A→ B

or
A

f−→ B.
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Image

Definition

Suppose that A and B are nonempty sets and that f ⊆ A× B is a
mapping from A to B. If (a, b) ∈ f we write f (a) = b and say that
b is the image of a under f .

Example

Let A = {1, 2, 3}, B = {a, b} and f = {(1, a), (2, a), (3, b)}. Then
f (1) =

? a

f (2) =

? a

f (3) =

? b
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Domain, Codomain, Range

Definition

Let f be a mapping from A to B. The set A is called the domain
of f and the set B is called the codomain of f . The range (or
image) of f is the set

f (A) = {y ∈ B | y = f (x) for some x ∈ A}

= {f (x) | x ∈ A}.

Example

Suppose that A = {1, 2, 3}, B = {a, b, c} and
f = {(1, a), (2, a), (3, b)}. Then the range of f is

f (A) = {a, b}.
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Domain, Codomain, Range

Definition

Let f be a mapping from A to B. The set A is called the domain
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Domain, Codomain, Range

Definition

Let f be a mapping from A to B. The set A is called the domain
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Inverse Image

Definition

Suppose that f : A→ B, S ⊆ A and T ⊆ B. Then

f (S) = {f (x) | x ∈ S}

= {y ∈ B | y = f (x) for some x ∈ S}.

f −1(T ) = {x ∈ A | f (x) ∈ T}

Note

With notation as above we have f (S) ⊆ B and f −1(T ) ⊆ A.
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Example

Let A = {1, 2, 3}, B = {a, b, c} and f = {(1, a), (2, a), (3, b)}.
Suppose that S = {1, 2} and that T = {b, c}. Then,

f (S) =

{a}

f −1(T ) =

{3}
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Onto, Surjective

Definition

Let f : A→ B. f is called onto or surjective if f (A) = B. In this
case f is said to be a mapping of A onto B.

Example

Let A = {1, 2, 3} and B = {a, b, c}. Then

• f = {(1, a), (2, a), (3, b)} is not onto because c 6∈ f (A).

• g = {(1, a), (2, c), (3, b)} is onto.
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Onto, Surjective

Definition

Let f : A→ B. f is called onto or surjective if f (A) = B. In this
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Example
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Onto, Surjective

Definition

Let f : A→ B. f is called onto or surjective if f (A) = B. In this
case f is said to be a mapping of A onto B.

Example

Let A = {1, 2, 3} and B = {a, b, c}. Then

• f = {(1, a), (2, a), (3, b)} is not onto because c 6∈ f (A).

• g = {(1, a), (2, c), (3, b)} is onto.
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Example

Suppose that f : Z→ Z is given by f = {(x , x + 5) | x ∈ Z}.
Show that f is onto.

Proof.

Suppose that y ∈ Z (the codomain).
Then letting x = y − 5 ∈ Z (the domain),
we have

f (x) = x + 5 = (y − 5) + 5 = y

Thus for all y ∈ Z (the codomain) there is an x ∈ Z (the domain)
such that f (x) = y .
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One to One, Injective

Definition

A mapping f : A→ B is one to one or injective if different
elements of A get mapped to different elements of B. Equivalently,
f is one to one or injective if for all b ∈ B, |f −1({b})| ≤ 1.

Example

Let A = {1, 2, 3} and B = {a, b, c}. Then

• f = {(1, a), (2, a), (3, b)} is not one to one because
f (1) = f (2).

• g = {(1, a), (2, c), (3, b)} is one to one.
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Example

Let f : Z→ Z be defined by f = {(x , x + 5) | x ∈ Z}. Show
that f is one to one.

Proof.

Suppose that a, b ∈ Z and that f (a) = f (b).
Then

f (a) = f (b)

⇒ a + 5 = b + 5

⇒ a = b

Thus if a 6= b then f (a) 6= f (b). So, f is injective.
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One to One Correspondence, Bijection

Definition

A mapping f : A→ B is a one to one correspondence or a
bijection if f is both injective and surjective.

Example

Let f : Z→ Z be defined by f = {(x , x + 5) | x ∈ Z}. Then we
have already seen that f is a bijection.
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One to One Correspondence, Bijection

Definition

A mapping f : A→ B is a one to one correspondence or a
bijection if f is both injective and surjective.

Example
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Example

Define f : Z→ Z by

f (x) =

{
x
2 if x is even,
x+1
2 if x is odd.

Show that f is onto but not one to one.

Proof.

(Onto): Suppose that b ∈ Z (the codomain).
We note that selecting x = 2b and y = 2b − 1 from the domain Z
yeilds f (x) = f (y) = b.
Thus for any b ∈ Z there is an x ∈ Z such that f (x) = b.
So, f is onto.
(Not One to One): f (1) = 1 = f (2). Thus f is not one to
one.
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Example

Define f : Z→ Z by f (x) = 5x . Show that f is one to one but not
onto.

Proof.

(Injective): Suppose that a, b ∈ Z and f (a) = f (b)
⇒ 5a = 5b ⇒ a = b.
Thus if a 6= b then f (a) 6= f (b) and f is injective.
(Not onto): Let b ∈ Z
Then f (x) = b ⇒ 5x = b
There is a solution x ∈ Z if and only if b is divisible by 5. Thus f
is not onto.
For example there is no x ∈ Z such that f (x) = 6.
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Composition of Mappings

Definition

Let g : A→ B and f : B → C . Then the composite mapping
f ◦ g : A→ C is defined by

f ◦ g(x) = f (g(x)).

Example

Let A = {x ∈ Z | x ≥ 0} and let B = {x ∈ Z | x ≤ 0}.
Suppose that f : Z→ A and g : A→ B are defined by

f (x) = x4 andg(x) = −x − 3.

Then
g ◦ f (x) = g(f (x)) = g(x4) = − x4 − 3.
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Fact

Composition of functions is associative. That is, if h : A→ B,
g : B → C and f : C → D, then (f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof.

Note that (f ◦ g) : B → D. Thus ((f ◦ g) ◦ h) : A→ D.
Similarly, (g ◦ h) : A→ C . Thus (f ◦ (g ◦ h)) : A→ D.
So the two functions have the same domain.
Also for any x ∈ A, we have

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x))

= f (g(h(x)))

= f ((g ◦ h)(x))

= (f ◦ (g ◦ h))(x).

Since the two functions have the same domain and agree on all
elements of the domain, they are equal.
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Section 1.3

Theorem

Suppose that g : A→ B and f : B → C are both surjective. Then
(f ◦ g) : A→ C is also surjective.

Theorem

Suppose that g : A→ B and f : B → C are both injective. Then
(f ◦ g) : A→ C is also injective.

Corollary

Suppose that g : A→ B and f : B → C are both bijections. Then
(f ◦ g) : A→ C is also a bijection.
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