MTHSC 412 Section 1.2 – Mappings

Kevin James

Kevin James MTHSC 412 Section 1.2 – Mappings

문 🕨 👘 문

DEFINITION (CARTESIAN PRODUCT)

For two nonempty sets A and B, the *Cartesian product* of A and B is defined by

$$A \times B = \{(a, b) \mid a \in A; b \in B\}.$$

▲ □ ► < □</p>

DEFINITION (CARTESIAN PRODUCT)

For two nonempty sets A and B, the *Cartesian product* of A and B is defined by

$$A \times B = \{(a, b) \mid a \in A; b \in B\}.$$

EXAMPLE

Let
$$A = \{1, 2, 3\}$$
 and let $B = \{a, b\}$. Then,

 $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$

A 3 > 1

DEFINITION (MAPPING)

Let A and B be two nonempty sets. A subset f of $A \times B$ is a mapping from A to B provided that for each $a \in A$ there is precisely one $b \in B$ such that $(a, b) \in f$.

- 4 同 ト - 4 三 ト

DEFINITION (MAPPING)

Let A and B be two nonempty sets. A subset f of $A \times B$ is a mapping from A to B provided that for each $a \in A$ there is precisely one $b \in B$ such that $(a, b) \in f$.

EXAMPLE

Let
$$A = \{1, 2, 3\}$$
 and let $B = \{a, b\}$. Then,

1 $f = \{(1, a), (2, a), (3, b)\}$ is a mapping.

2 $g = \{(1, a), (2, a), (1, b), (3, b)\}$ is not a mapping.

・ロト ・回ト ・ヨト

DEFINITION (MAPPING)

Let A and B be two nonempty sets. A subset f of $A \times B$ is a mapping from A to B provided that for each $a \in A$ there is precisely one $b \in B$ such that $(a, b) \in f$.

EXAMPLE

Let
$$A = \{1, 2, 3\}$$
 and let $B = \{a, b\}$. Then,

1 $f = \{(1, a), (2, a), (3, b)\}$ is a mapping.

2 $g = \{(1, a), (2, a), (1, b), (3, b)\}$ is not a mapping.

・ロト ・回ト ・ヨト

NOTATION

If f is a mapping from A to B, then we write

$$f: A \to B$$

or

$$A \stackrel{f}{\longrightarrow} B.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Suppose that A and B are nonempty sets and that $f \subseteq A \times B$ is a mapping from A to B. If $(a, b) \in f$ we write f(a) = b and say that b is the *image* of a under f.

A (1) > < 3</p>

Suppose that A and B are nonempty sets and that $f \subseteq A \times B$ is a mapping from A to B. If $(a, b) \in f$ we write f(a) = b and say that b is the *image* of a under f.

EXAMPLE

Let
$$A = \{1, 2, 3\}$$
, $B = \{a, b\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Then
 $f(1) = ?$
 $f(2) = ?$
 $f(3) = ?$

A B > A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A

Suppose that A and B are nonempty sets and that $f \subseteq A \times B$ is a mapping from A to B. If $(a, b) \in f$ we write f(a) = b and say that b is the *image* of a under f.

EXAMPLE

Let
$$A = \{1, 2, 3\}$$
, $B = \{a, b\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Then
 $f(1) = a$
 $f(2) = ?$
 $f(3) = ?$

A B > A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A

Suppose that A and B are nonempty sets and that $f \subseteq A \times B$ is a mapping from A to B. If $(a, b) \in f$ we write f(a) = b and say that b is the *image* of a under f.

Example

Let
$$A = \{1, 2, 3\}$$
, $B = \{a, b\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Then
 $f(1) = a$
 $f(2) = a$
 $f(3) = ?$

A B > A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A

Suppose that A and B are nonempty sets and that $f \subseteq A \times B$ is a mapping from A to B. If $(a, b) \in f$ we write f(a) = b and say that b is the *image* of a under f.

EXAMPLE Let $A = \{1, 2, 3\}, B = \{a, b\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Then f(1) = af(2) = af(3) = b

(4月) (日)

∢ 문 ▶ 문 문

Domain, Codomain, Range

DEFINITION

Let f be a mapping from A to B. The set A is called the *domain* of f and the set B is called the *codomain* of f. The range (or image) of f is the set

$$f(A) = \{y \in B \mid y = f(x) \text{ for some } x \in A\}$$

A⊒ ▶ ∢ ∃

Domain, Codomain, Range

DEFINITION

Let f be a mapping from A to B. The set A is called the *domain* of f and the set B is called the *codomain* of f. The range (or image) of f is the set

$$f(A) = \{y \in B \mid y = f(x) \text{ for some } x \in A\}$$
$$= \{f(x) \mid x \in A\}.$$

A⊒ ▶ ∢ ∃

DOMAIN, CODOMAIN, RANGE

A (1) < A (1) </p>

DEFINITION

Let f be a mapping from A to B. The set A is called the *domain* of f and the set B is called the *codomain* of f. The range (or image) of f is the set

$$f(A) = \{y \in B \mid y = f(x) \text{ for some } x \in A\}$$
$$= \{f(x) \mid x \in A\}.$$

EXAMPLE

Suppose that $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Then the range of f is

$$f(A) = \{a, b\}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

DEFINITION

Suppose that $f : A \rightarrow B$, $S \subseteq A$ and $T \subseteq B$. Then

 $f(S) = \{f(x) \mid x \in S\}$

Suppose that $f : A \rightarrow B$, $S \subseteq A$ and $T \subseteq B$. Then

$$f(S) = \{f(x) \mid x \in S\}$$

= $\{y \in B \mid y = f(x) \text{ for some } x \in S\}$

・ロト ・回ト ・ヨト

< 注→ 注

Suppose that $f : A \rightarrow B$, $S \subseteq A$ and $T \subseteq B$. Then

$$f(S) = \{f(x) \mid x \in S\}$$

= $\{y \in B \mid y = f(x) \text{ for some } x \in S\}$

$$f^{-1}(T) = \{x \in A \mid f(x) \in T\}$$

・ロト ・回ト ・ヨト

▲ 문 ▶ 문

Suppose that $f : A \rightarrow B$, $S \subseteq A$ and $T \subseteq B$. Then

$$f(S) = \{f(x) \mid x \in S\}$$

= $\{y \in B \mid y = f(x) \text{ for some } x \in S\}$

$$f^{-1}(T) = \{x \in A \mid f(x) \in T\}$$

Note

With notation as above we have $f(S) \subseteq B$ and $f^{-1}(T) \subseteq A$.

・ロト ・回ト ・ヨト

< 注→ 注

Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Suppose that $S = \{1, 2\}$ and that $T = \{b, c\}$. Then, $f(S) = f^{-1}(T) =$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Suppose that $S = \{1, 2\}$ and that $T = \{b, c\}$. Then, $f(S) = \{a\}$ $f^{-1}(T) =$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Suppose that $S = \{1, 2\}$ and that $T = \{b, c\}$. Then, $f(S) = \{a\}$ $f^{-1}(T) = \{3\}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

ONTO, SURJECTIVE

DEFINITION

Let $f : A \to B$. f is called *onto* or *surjective* if f(A) = B. In this case f is said to be a mapping of A onto B.

・ロト ・回ト ・ヨト

< 注→ 注

ONTO, SURJECTIVE

DEFINITION

Let $f : A \to B$. f is called *onto* or *surjective* if f(A) = B. In this case f is said to be a mapping of A onto B.

EXAMPLE

Let
$$A = \{1, 2, 3\}$$
 and $B = \{a, b, c\}$. Then

• $f = \{(1, a), (2, a), (3, b)\}$ is not onto because $c \notin f(A)$.

・ロト ・回ト ・ヨト

< ≣ > ____

ONTO, SURJECTIVE

DEFINITION

Let $f : A \to B$. f is called *onto* or *surjective* if f(A) = B. In this case f is said to be a mapping of A onto B.

EXAMPLE

Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$. Then

- $f = \{(1, a), (2, a), (3, b)\}$ is not onto because $c \notin f(A)$.
- $g = \{(1, a), (2, c), (3, b)\}$ is onto.

▲ □ ► ▲ □ ►

∢ 문 ▶ 문 문

Suppose that $f : \mathbb{Z} \to \mathbb{Z}$ is given by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is onto.

Suppose that $f : \mathbb{Z} \to \mathbb{Z}$ is given by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is onto.

Proof.

Э

Suppose that $f : \mathbb{Z} \to \mathbb{Z}$ is given by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is onto.

Proof.

Suppose that $y \in \mathbb{Z}$ (the codomain).

・ロト ・回ト ・ヨト

< 注 → 注

Suppose that $f : \mathbb{Z} \to \mathbb{Z}$ is given by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is onto.

Proof.

Suppose that $y \in \mathbb{Z}$ (the codomain). Then letting x =

・ロト ・回ト ・ヨト

< 注→ 注

Suppose that $f : \mathbb{Z} \to \mathbb{Z}$ is given by $f = \{(x, x+5) \mid x \in \mathbb{Z}\}$. Show that f is onto.

Proof.

Suppose that $y \in \mathbb{Z}$ (the codomain). Then letting x = y - 5

・ロト ・回ト ・ヨト

★ E ▶ E

Suppose that $f : \mathbb{Z} \to \mathbb{Z}$ is given by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is onto.

Proof.

Suppose that $y \in \mathbb{Z}$ (the codomain). Then letting $x = y - 5 \in \mathbb{Z}$ (the domain),

• 3 • 1

Suppose that $f : \mathbb{Z} \to \mathbb{Z}$ is given by $f = \{(x, x+5) \mid x \in \mathbb{Z}\}$. Show that f is onto.

Proof.

Suppose that $y \in \mathbb{Z}$ (the codomain). Then letting $x = y - 5 \in \mathbb{Z}$ (the domain), we have

$$f(x) = x + 5 = (y - 5) + 5 = y$$

・ロト ・回ト ・ヨト

Suppose that $f : \mathbb{Z} \to \mathbb{Z}$ is given by $f = \{(x, x+5) \mid x \in \mathbb{Z}\}$. Show that f is onto.

Proof.

Suppose that $y \in \mathbb{Z}$ (the codomain). Then letting $x = y - 5 \in \mathbb{Z}$ (the domain), we have

$$f(x) = x + 5 = (y - 5) + 5 = y$$

Thus for all $y \in \mathbb{Z}$ (the codomain) there is an $x \in \mathbb{Z}$ (the domain) such that f(x) = y.

A mapping $f : A \to B$ is one to one or injective if different elements of A get mapped to different elements of B. Equivalently, f is one to one or injective if for all $b \in B$, $|f^{-1}(\{b\})| \le 1$.

・ロト ・回ト ・ヨト

< ≣ > ____

A mapping $f : A \to B$ is one to one or injective if different elements of A get mapped to different elements of B. Equivalently, f is one to one or injective if for all $b \in B$, $|f^{-1}(\{b\})| \le 1$.

Example

Let
$$A = \{1, 2, 3\}$$
 and $B = \{a, b, c\}$. Then

f = {(1, a), (2, a), (3, b)} is not one to one because
 f(1) = f(2).

・ロト ・回ト ・ヨト

★ 문 ▶ 문

A mapping $f : A \to B$ is one to one or injective if different elements of A get mapped to different elements of B. Equivalently, f is one to one or injective if for all $b \in B$, $|f^{-1}(\{b\})| \le 1$.

Example

Let
$$A = \{1, 2, 3\}$$
 and $B = \{a, b, c\}$. Then

f = {(1, a), (2, a), (3, b)} is not one to one because
 f(1) = f(2).

•
$$g = \{(1, a), (2, c), (3, b)\}$$
 is one to one.

・ロト ・回ト ・ヨト

- ★ 臣 ▶ - - 臣
Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is one to one.

(ロ) (同) (E) (E) (E)

Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is one to one.

Proof.

Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is one to one.

Proof.

Suppose that $a, b \in \mathbb{Z}$ and that f(a) = f(b).

・ロト ・回ト ・ヨト

▲ 문 ▶ 문

Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is one to one.

Proof.

Suppose that $a, b \in \mathbb{Z}$ and that f(a) = f(b). Then

f(a)=f(b)

→ 注→ 注

Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is one to one.

Proof.

Suppose that $a, b \in \mathbb{Z}$ and that f(a) = f(b). Then

$$f(a) = f(b)$$

$$\Rightarrow a+5 = b+5$$

・ロト ・回ト ・ヨト

▲ 문 ▶ 문

Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is one to one.

Proof.

Suppose that $a, b \in \mathbb{Z}$ and that f(a) = f(b). Then

$$f(a) = f(b)$$

$$\Rightarrow a + 5 = b + 5$$

$$\Rightarrow a = b$$

・ロト ・回ト ・ヨト

* 注 * 二 注

Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is one to one.

Proof.

Suppose that $a, b \in \mathbb{Z}$ and that f(a) = f(b). Then

$$f(a) = f(b)$$

$$\Rightarrow a+5 = b+5$$

$$\Rightarrow a = b$$

Thus if $a \neq b$ then $f(a) \neq f(b)$.

・ロン ・回 と ・ 回 と ・ 回 と

Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is one to one.

Proof.

Suppose that $a, b \in \mathbb{Z}$ and that f(a) = f(b). Then

$$f(a) = f(b)$$

$$\Rightarrow a+5 = b+5$$

$$\Rightarrow a = b$$

Thus if $a \neq b$ then $f(a) \neq f(b)$. So, f is injective.

(ロ) (同) (E) (E) (E)

ONE TO ONE CORRESPONDENCE, BIJECTION

DEFINITION

A mapping $f : A \rightarrow B$ is a one to one correspondence or a bijection if f is both injective and surjective.

→ 同 → → 三 →

ONE TO ONE CORRESPONDENCE, BIJECTION

DEFINITION

A mapping $f : A \rightarrow B$ is a one to one correspondence or a bijection if f is both injective and surjective.

Example

Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x+5) \mid x \in \mathbb{Z}\}$. Then we have already seen that f is a bijection.

・ロト ・回ト ・ヨト

Define $f : \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

Show that f is onto but not one to one.

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Define $f : \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

Show that f is onto but not one to one.

PROOF. (Onto):

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Define $f : \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

Show that f is onto but not one to one.

Proof.

(Onto): Suppose that $b \in \mathbb{Z}$ (the codomain).

・ロト ・回ト ・ヨト

★ 문 ▶ 문

Define $f : \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

Show that f is onto but not one to one.

Proof.

(Onto): Suppose that $b \in \mathbb{Z}$ (the codomain). We note that selecting x = 2b and y = 2b - 1 from the domain \mathbb{Z} yeilds

Image: A math a math

< ∃ >

Define $f : \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

Show that f is onto but not one to one.

Proof.

(Onto): Suppose that $b \in \mathbb{Z}$ (the codomain). We note that selecting x = 2b and y = 2b - 1 from the domain \mathbb{Z} yields f(x) = f(y) = b.

Image: A math a math

Define $f : \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

Show that f is onto but not one to one.

Proof.

(Onto): Suppose that $b \in \mathbb{Z}$ (the codomain). We note that selecting x = 2b and y = 2b - 1 from the domain \mathbb{Z} yields f(x) = f(y) = b. Thus for any $b \in \mathbb{Z}$ there is an $x \in \mathbb{Z}$ such that f(x) = b.

Define $f : \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

Show that f is onto but not one to one.

Proof.

(Onto): Suppose that $b \in \mathbb{Z}$ (the codomain). We note that selecting x = 2b and y = 2b - 1 from the domain \mathbb{Z} yields f(x) = f(y) = b. Thus for any $b \in \mathbb{Z}$ there is an $x \in \mathbb{Z}$ such that f(x) = b. So, f is onto.

Define $f : \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

Show that f is onto but not one to one.

Proof.

(Onto): Suppose that $b \in \mathbb{Z}$ (the codomain). We note that selecting x = 2b and y = 2b - 1 from the domain \mathbb{Z} yeilds f(x) = f(y) = b. Thus for any $b \in \mathbb{Z}$ there is an $x \in \mathbb{Z}$ such that f(x) = b. So, f is onto. **(Not One to One):** f(1) = 1 = f(2). Thus f is not one to one.

Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Proof.

<ロ> (四) (四) (三) (三) (三)

Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Proof.

(Injective): Suppose that $a, b \in \mathbb{Z}$ and f(a) = f(b)

・ロト ・回ト ・ヨト

★ 문 ▶ 문

Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Proof.

(Injective): Suppose that $a, b \in \mathbb{Z}$ and f(a) = f(b) $\Rightarrow 5a = 5b \Rightarrow a = b$.

・ロト ・回ト ・ヨト

▲ 문 ▶ 문

Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Proof.

(Injective): Suppose that $a, b \in \mathbb{Z}$ and f(a) = f(b) $\Rightarrow 5a = 5b \Rightarrow a = b$. Thus if $a \neq b$ then $f(a) \neq f(b)$ and f is injective.

< E → E

Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Proof.

(Injective): Suppose that $a, b \in \mathbb{Z}$ and f(a) = f(b) $\Rightarrow 5a = 5b \Rightarrow a = b$. Thus if $a \neq b$ then $f(a) \neq f(b)$ and f is injective. (Not onto): Let $b \in \mathbb{Z}$

Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Proof.

(Injective): Suppose that $a, b \in \mathbb{Z}$ and f(a) = f(b) $\Rightarrow 5a = 5b \Rightarrow a = b$. Thus if $a \neq b$ then $f(a) \neq f(b)$ and f is injective. (Not onto): Let $b \in \mathbb{Z}$ Then $f(x) = b \Rightarrow 5x = b$

< 注→ ……

Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Proof.

(Injective): Suppose that $a, b \in \mathbb{Z}$ and f(a) = f(b) $\Rightarrow 5a = 5b \Rightarrow a = b$. Thus if $a \neq b$ then $f(a) \neq f(b)$ and f is injective. (Not onto): Let $b \in \mathbb{Z}$ Then $f(x) = b \Rightarrow 5x = b$ There is a solution $x \in \mathbb{Z}$ if and only if b is divisible by 5. Thus fis not onto.

▲ □ ► ▲ □ ►

Define $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Proof.

(Injective): Suppose that $a, b \in \mathbb{Z}$ and f(a) = f(b) $\Rightarrow 5a = 5b \Rightarrow a = b$. Thus if $a \neq b$ then $f(a) \neq f(b)$ and f is injective. (Not onto): Let $b \in \mathbb{Z}$ Then $f(x) = b \Rightarrow 5x = b$ There is a solution $x \in \mathbb{Z}$ if and only if b is divisible by 5. Thus fis not onto. For example there is no $x \in \mathbb{Z}$ such that f(x) = 6.

- 4 同 ト - 4 三 ト

★ 문 ▶ 문

DEFINITION

Let $g: A \to B$ and $f: B \to C$. Then the composite mapping $f \circ g: A \to C$ is defined by

 $f \circ g(x) = f(g(x)).$

DEFINITION

Let $g: A \to B$ and $f: B \to C$. Then the composite mapping $f \circ g: A \to C$ is defined by

$$f\circ g(x)=f(g(x)).$$

EXAMPLE

Let $A = \{x \in \mathbb{Z} \mid x \ge 0\}$ and let $B = \{x \in \mathbb{Z} \mid x \le 0\}$. Suppose that $f : \mathbb{Z} \to A$ and $g : A \to B$ are defined by

$$f(x) = x^4$$
 and $g(x) = -x - 3$.

$$g \circ f(x) =$$

DEFINITION

Let $g: A \to B$ and $f: B \to C$. Then the composite mapping $f \circ g: A \to C$ is defined by

$$f\circ g(x)=f(g(x)).$$

EXAMPLE

Let $A = \{x \in \mathbb{Z} \mid x \ge 0\}$ and let $B = \{x \in \mathbb{Z} \mid x \le 0\}$. Suppose that $f : \mathbb{Z} \to A$ and $g : A \to B$ are defined by

$$f(x) = x^4 \qquad \text{and} g(x) = -x - 3.$$

$$g \circ f(x) = g(f(x)) =$$

DEFINITION

Let $g: A \to B$ and $f: B \to C$. Then the composite mapping $f \circ g: A \to C$ is defined by

$$f\circ g(x)=f(g(x)).$$

EXAMPLE

Let $A = \{x \in \mathbb{Z} \mid x \ge 0\}$ and let $B = \{x \in \mathbb{Z} \mid x \le 0\}$. Suppose that $f : \mathbb{Z} \to A$ and $g : A \to B$ are defined by

$$f(x) = x^4 \qquad \text{and} g(x) = -x - 3.$$

$$g \circ f(x) = g(f(x)) = g(x^4) =$$

DEFINITION

Let $g: A \to B$ and $f: B \to C$. Then the composite mapping $f \circ g: A \to C$ is defined by

$$f\circ g(x)=f(g(x)).$$

EXAMPLE

Let $A = \{x \in \mathbb{Z} \mid x \ge 0\}$ and let $B = \{x \in \mathbb{Z} \mid x \le 0\}$. Suppose that $f : \mathbb{Z} \to A$ and $g : A \to B$ are defined by

$$f(x) = x^4 \qquad \text{and} g(x) = -x - 3.$$

$$g \circ f(x) = g(f(x)) = g(x^4) = -x^4 - 3.$$

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

イロン イ部ン イヨン イヨン 三日

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof.

Note that $(f \circ g) : B \to D$. Thus $((f \circ g) \circ h) : A \to D$.

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof.

Note that $(f \circ g) : B \to D$. Thus $((f \circ g) \circ h) : A \to D$. Similarly, $(g \circ h) : A \to C$. Thus $(f \circ (g \circ h)) : A \to D$.

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof.

Note that $(f \circ g) : B \to D$. Thus $((f \circ g) \circ h) : A \to D$. Similarly, $(g \circ h) : A \to C$. Thus $(f \circ (g \circ h)) : A \to D$. So the two functions have the same domain.
Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof.

$$((f \circ g) \circ h)(x) =$$

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof.

$$((f \circ g) \circ h)(x) = (f \circ g)(h(x))$$

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof.

$$\begin{array}{rcl} ((f \circ g) \circ h)(x) &=& (f \circ g)(h(x)) \\ &=& f(g(h(x))) \end{array}$$

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof.

$$((f \circ g) \circ h)(x) = (f \circ g)(h(x))$$
$$= f(g(h(x)))$$
$$= f((g \circ h)(x))$$

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof.

$$f(f \circ g) \circ h)(x) = (f \circ g)(h(x))$$
$$= f(g(h(x)))$$
$$= f((g \circ h)(x))$$
$$= (f \circ (g \circ h))(x)$$

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof.

Note that $(f \circ g) : B \to D$. Thus $((f \circ g) \circ h) : A \to D$. Similarly, $(g \circ h) : A \to C$. Thus $(f \circ (g \circ h)) : A \to D$. So the two functions have the same domain. Also for any $x \in A$, we have

$$egin{aligned} f((f \circ g) \circ h)(x) &= (f \circ g)(h(x)) \ &= f(g(h(x))) \ &= f((g \circ h)(x)) \ &= f((g \circ h)(x)) \ &= (f \circ (g \circ h))(x) \end{aligned}$$

Since the two functions have the same domain and agree on all elements of the domain, they are equal.

THEOREM

Suppose that $g : A \to B$ and $f : B \to C$ are both surjective. Then $(f \circ g) : A \to C$ is also surjective.

・ロト ・回ト ・ヨト

▲ 문 ▶ 문

Theorem

Suppose that $g : A \to B$ and $f : B \to C$ are both surjective. Then $(f \circ g) : A \to C$ is also surjective.

Theorem

Suppose that $g : A \to B$ and $f : B \to C$ are both injective. Then $(f \circ g) : A \to C$ is also injective.

Theorem

Suppose that $g : A \to B$ and $f : B \to C$ are both surjective. Then $(f \circ g) : A \to C$ is also surjective.

Theorem

Suppose that $g : A \to B$ and $f : B \to C$ are both injective. Then $(f \circ g) : A \to C$ is also injective.

COROLLARY

Suppose that $g : A \to B$ and $f : B \to C$ are both bijections. Then $(f \circ g) : A \to C$ is also a bijection.

<> ≣ → ____