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CARTESIAN PRODUCTS

DEFINITION (CARTESIAN PRODUCT)

For two nonempty sets A and B, the Cartesian product of A and B
is defined by

AxB={(a,b) | acAbeB}.
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CARTESIAN PRODUCTS

DEFINITION (CARTESIAN PRODUCT)

For two nonempty sets A and B, the Cartesian product of A and B
is defined by

AxB={(a,b) | acAbeB}.

Let A= {1,2,3} and let B = {a, b}. Then,

Ax B ={(1,a),(1,b),(2 a),(2 b),(3,a),(3,b)}.
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MAPPING

DEFINITION (MAPPING)

Let A and B be two nonempty sets. A subset f of A X B is a
mapping from A to B provided that for each a € A there is
precisely one b € B such that (a, b) € f.
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MAPPING

DEFINITION (MAPPING)

Let A and B be two nonempty sets. A subset f of A X B is a
mapping from A to B provided that for each a € A there is
precisely one b € B such that (a, b) € f.

EXAMPLE

Let A={1,2,3} and let B = {a, b}. Then,
O f=1{(1,a),(2,a),(3,b)} is a mapping.
9 g =1{(1,2),(2,a),(1,b),(3,b)} is not a mapping.
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MAPPING

DEFINITION (MAPPING)

Let A and B be two nonempty sets. A subset f of A X B is a
mapping from A to B provided that for each a € A there is
precisely one b € B such that (a, b) € f.

EXAMPLE

Let A={1,2,3} and let B = {a, b}. Then,
O f=1{(1,a),(2,a),(3,b)} is a mapping.
9 g=1{(1,2),(2,a),(1,b),(3,b)} is not a mapping.
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NOTATION

If f is a mapping from A to B, then we write
f:A— B

or
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IMAGE

Suppose that A and B are nonempty sets and that f C A x B is a
mapping from A to B. If (a, b) € f we write f(a) = b and say that
b is the image of a under f.
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DEFINITION

Suppose that A and B are nonempty sets and that f C A x B is a
mapping from A to B. If (a, b) € f we write f(a) = b and say that
b is the image of a under f.

EXAMPLE

Let A= {1, 2 ,3}, B={a,b} and f = {(1,a),(2,a),(3,b)}. Then

f(1) =
f2) = ?
3 = 7
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DEFINITION

Suppose that A and B are nonempty sets and that f C A x B is a
mapping from A to B. If (a, b) € f we write f(a) = b and say that
b is the image of a under f.

Let A={1,2,3}, B={a,b} and f = {(1,a),(2,a),(3,b)}. Then
f(l)y = a
f(2) = 7
f3) = 7
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DEFINITION

Suppose that A and B are nonempty sets and that f C A x B is a
mapping from A to B. If (a, b) € f we write f(a) = b and say that
b is the image of a under f.

V.
EXAMPLE

Let A={1,2,3}, B={a,b} and f = {(1,a),(2,a),(3,b)}. Then

f(l)y = a
f(2) = a
f3) = 72
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DEFINITION

Suppose that A and B are nonempty sets and that f C A x B is a
mapping from A to B. If (a, b) € f we write f(a) = b and say that
b is the image of a under f.

V.
EXAMPLE

Let A={1,2,3}, B={a,b} and f = {(1,a),(2,a),(3,b)}. Then

f(l)y = a
f(2) = a
f(3) = b
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DoMAIN, CODOMAIN, RANGE

DEFINITION

Let f be a mapping from A to B. The set A is called the domain
of f and the set B is called the codomain of f. The range (or
image) of f is the set

f(A) = {yeB | y=f(x)forsomexeA}
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DoMAIN, CODOMAIN, RANGE

DEFINITION

Let f be a mapping from A to B. The set A is called the domain
of f and the set B is called the codomain of f. The range (or
image) of f is the set

f(A) = {yeB | y=f(x)forsomexeA}
= {f(x) | xeA}L
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DoMAIN, CODOMAIN, RANGE

DEFINITION

Let f be a mapping from A to B. The set A is called the domain
of f and the set B is called the codomain of f. The range (or
image) of f is the set

f(A) = {yeB | y=f(x)forsomexeA}
{f(x) | xe€A}

Suppose that A= {1,2,3}, B={a, b,c} and
f=1{(1,a),(2,a),(3,b)}. Then the range of f is

f(A) = {a, b}.
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INVERSE IMAGE

DEFINITION

Suppose that f: A— B, SC Aand T C B. Then

f(<S) = {f(x) | xeS}
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INVERSE IMAGE

DEFINITION

Suppose that f: A— B, SC Aand T C B. Then

f(<S) = {f(x) | xeS}
= {yeB | y=f(x)forsomex e S}.
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INVERSE IMAGE

DEFINITION

Suppose that f: A— B, SC Aand T C B. Then

f(<S) = {f(x) | xeS}
= {yeB | y=f(x)forsomex e S}.

fY(T) = {xeA | f(x)eT}
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INVERSE IMAGE

DEFINITION

Suppose that f: A— B, SC Aand T C B. Then

f(<S) = {f(x) | xeS}
= {yeB | y=f(x)forsomex e S}.

fY(T) = {xeA | f(x)eT}

With notation as above we have f(S) C B and f~1(T) C A

Kevin James MTHSC 412 Section 1.2 —Mappings



Let A={1,2,3}, B={a,b,c} and f ={(1,a),(2,a),(3,b)}.
Suppose that S = {1,2} and that T = {b,c}. Then,

f(5) =
f~YT) =
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Let A={1,2,3}, B={a,b,c} and f ={(1,a),(2,a),(3,b)}.
Suppose that S = {1,2} and that T = {b,c}. Then,

f(5) = {a}
f~YT) =
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Let A={1,2,3}, B={a,b,c} and f ={(1,a),(2,a),(3,b)}.
Suppose that S = {1,2} and that T = {b,c}. Then,

f(5) = {a}
AT = {3}
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ONTO, SURJECTIVE

Let f : A— B. f is called onto or surjective if f(A) = B. In this
case f is said to be a mapping of A onto B.
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ONTO, SURJECTIVE

DEFINITION

Let f : A— B. f is called onto or surjective if f(A) = B. In this
case f is said to be a mapping of A onto B.

EXAMPLE

Let A={1,2,3} and B = {a, b, c}. Then
o f={(1,a),(2,a),(3,b)} is not onto because ¢ & f(A).
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ONTO, SURJECTIVE

DEFINITION

Let f : A— B. f is called onto or surjective if f(A) = B. In this
case f is said to be a mapping of A onto B.

EXAMPLE

Let A= {17273} and B = {3, b, C}. Then
e f={(1,a),(2,a),(3,b)} is not onto because c ¢ f(A).
e g=1{(1,a),(2,¢),(3,b)} is onto.
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Suppose that f : Z — Z is given by f = {(x,x+5) | x € Z}.
Show that f is onto.
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EXAMPLE

Suppose that f : Z — Z is given by f = {(x,x+5) | x € Z}.
Show that f is onto.

PROOF.
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EXAMPLE

Suppose that f : Z — Z is given by f = {(x,x+5) | x € Z}.
Show that f is onto.

PROOF.

Suppose that y € Z (the codomain).

A
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EXAMPLE

Suppose that f : Z — Z is given by f = {(x,x+5) | x € Z}.
Show that f is onto.

PROOF.

| A

Suppose that y € Z (the codomain).
Then letting x =

A
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EXAMPLE

Suppose that f : Z — Z is given by f = {(x,x+5) | x € Z}.
Show that f is onto.

PROOF.

| A

Suppose that y € Z (the codomain).
Then letting x =y — 5

A
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EXAMPLE

Suppose that f : Z — Z is given by f = {(x,x+5) | x € Z}.
Show that f is onto.

PROOF.

| A

Suppose that y € Z (the codomain).
Then letting x = y — 5 € Z (the domain),

A
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Suppose that f : Z — Z is given by f = {(x,x+5) | x € Z}.
Show that f is onto.

| A

PROOF.
Suppose that y € Z (the codomain).
Then letting x = y — 5 € Z (the domain),

we have
f(x)=x+5=(y—-5)+5=y

A
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Suppose that f : Z — Z is given by f = {(x,x+5) | x € Z}.
Show that f is onto.

| A

PROOF.
Suppose that y € Z (the codomain).
Then letting x = y — 5 € Z (the domain),
we have
f(x)=x+5=(y—-5)+5=y

Thus for all y € Z (the codomain) there is an x € Z (the domain)
such that f(x) = y. O

v
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ONE TO ONE, INJECTIVE

A mapping f : A — B is one to one or injective if different
elements of A get mapped to different elements of B. Equivalently,
f is one to one or injective if for all b € B, |[f~1({b})| < 1.
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ONE TO ONE, INJECTIVE

DEFINITION

A mapping f : A — B is one to one or injective if different
elements of A get mapped to different elements of B. Equivalently,
f is one to one or injective if for all b € B, |[f~}({b})| < 1.

EXAMPLE

Let A={1,2,3} and B = {a, b,c}. Then
o f=1{(1,a),(2,a),(3,b)} is not one to one because

F(1) = £(2).
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ONE TO ONE, INJECTIVE

DEFINITION

A mapping f : A — B is one to one or injective if different
elements of A get mapped to different elements of B. Equivalently,
f is one to one or injective if for all b € B, |[f~}({b})| < 1.

EXAMPLE

Let A={1,2,3} and B ={a, b,c}. Then
o f={(1,a),(2,a),(3,b)} is not one to one because
f(1) = f(2).
e g={(1,a),(2,¢),(3,b)} is one to one.
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Let f : Z — Z be defined by f = {(x,x+5) | x € Z}. Show
that f is one to one.
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Let f : Z — Z be defined by f = {(x,x+5) | x € Z}. Show
that f is one to one.

PROOF.
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Let f : Z — Z be defined by f = {(x,x+5) | x € Z}. Show
that f is one to one.

v

PROOF.

Suppose that a, b € Z and that f(a) = f(b).
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Let f : Z — Z be defined by f = {(x,x+5) | x € Z}. Show
that f is one to one.

| 5\

PROOF.
Suppose that a, b € Z and that f(a) = f(b).
Then

f(a) = f(b)
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Let f : Z — Z be defined by f = {(x,x+5) | x € Z}. Show
that f is one to one.

| 5\

PROOF.
Suppose that a, b € Z and that f(a) = f(b).
Then

f(a) = f(b)

= a+5=b+5
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Let f : Z — Z be defined by f = {(x,x+5) | x € Z}. Show
that f is one to one.

| 5\

PROOF.
Suppose that a, b € Z and that f(a) = f(b).
Then
f(a) = f(b)
= a+5=b+5
= a=5b
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Let f : Z — Z be defined by f = {(x,x+5) | x € Z}. Show
that f is one to one.

| 5\

PROOF.
Suppose that a, b € Z and that f(a) = f(b).
Then
f(a) = f(b)
= a+5=b+5
= a=5b

Thus if a # b then f(a) # f(b).
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Let f : Z — Z be defined by f = {(x,x+5) | x € Z}. Show
that f is one to one.

PROOF.

Suppose that a, b € Z and that f(a) = f(b).
Then

| 5\

f(a) = f(b)
= a+5=b+5
= a=5b

Thus if a # b then f(a) # f(b). So, f is injective. O
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ONE TO ONE CORRESPONDENCE, BIJECTION

A mapping f : A — B is a one to one correspondence or a
bijection if f is both injective and surjective.
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ONE TO ONE CORRESPONDENCE, BIJECTION

DEFINITION

A mapping f : A — B is a one to one correspondence or a
bijection if f is both injective and surjective.

Let f : Z — Z be defined by f = {(x,x+5) | x &€ Z}. Then we
have already seen that f is a bijection.

4
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EXAMPLE

Define f : Z — Z by
F(x) = 5 if x is even,
xt1 i x is odd.
Show that f is onto but not one to one. )
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EXAMPLE

Define f : Z — 7Z by

if x is even,

f —
(x) il i oo s @l

X NIX

N ‘

Show that f is onto but not one to one.

| A\

PRrROOF.
(Onto):
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EXAMPLE

Define f : Z — 7Z by

f(x) = {

Show that f is onto but not one to one.

if x is even,
L if x is odd.

X NIX

N ‘

PROOF.
(Onto): Suppose that b € Z (the codomain).

| A\
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EXAMPLE

Define f : Z — 7Z by

f(x) = {

Show that f is onto but not one to one.

if x is even,
L if x is odd.

X NIX

N ‘

| A\

PROOF.

(Onto): Suppose that b € Z (the codomain).

We note that selecting x = 2b and y = 2b — 1 from the domain Z
yeilds
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EXAMPLE

Define f : Z — 7Z by

f(x) = {

Show that f is onto but not one to one.

if x is even,
L if x is odd.

X NIX

N ‘

| A\

PROOF.

(Onto): Suppose that b € Z (the codomain).

We note that selecting x = 2b and y = 2b — 1 from the domain Z
yeilds f(x) = f(y) = b.
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EXAMPLE
Define f : Z — 7Z by

f(x) = {

Show that f is onto but not one to one.

if x is even,
L if x is odd.

X NIX

N ‘

PROOF.

(Onto): Suppose that b € Z (the codomain).

We note that selecting x = 2b and y = 2b — 1 from the domain Z
yeilds f(x) = f(y) = b.

Thus for any b € Z there is an x € Z such that f(x) = b.

| A\
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EXAMPLE
Define f : Z — 7Z by

f(x) = {

Show that f is onto but not one to one.

if x is even,
L if x is odd.

X NIX

N ‘

PROOF.

(Onto): Suppose that b € Z (the codomain).

We note that selecting x = 2b and y = 2b — 1 from the domain Z
yeilds f(x) = f(y) = b.

Thus for any b € Z there is an x € Z such that f(x) = b.

So, f is onto.

| A\
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EXAMPLE
Define f : Z — 7Z by

f(x) = {

Show that f is onto but not one to one.

if x is even,
L if x is odd.

X NIX

N ‘

PROOF.

(Onto): Suppose that b € Z (the codomain).

We note that selecting x = 2b and y = 2b — 1 from the domain Z
yeilds f(x) = f(y) = b.

Thus for any b € Z there is an x € Z such that f(x) = b.

So, f is onto.

(Not One to One): f(1) =1 = f(2). Thus f is not one to

one. L]
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Define f : Z — Z by f(x) = 5x. Show that f is one to one but not
onto.
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Define f : Z — Z by f(x) = 5x. Show that f is one to one but not
onto.

PROOF.

Kevin James MTHSC 412 Section 1.2 —Mappings



Define f : Z — Z by f(x) = 5x. Show that f is one to one but not
onto.

PROOF.

(Injective): Suppose that a,b € Z and f(a) = f(b)
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EXAMPLE

Define f : Z — Z by f(x) = 5x. Show that f is one to one but not
onto.

PROOF.

(Injective): Suppose that a,b € Z and f(a) = f(b)
=b5a=5b=a=b.

| \
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EXAMPLE

Define f : Z — Z by f(x) = 5x. Show that f is one to one but not
onto.

PROOF.

(Injective): Suppose that a, b € Z and f(a) = f(b)
=ba=5b=a=0b.

Thus if a # b then f(a) # f(b) and f is injective.

| \
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EXAMPLE

Define f : Z — Z by f(x) = 5x. Show that f is one to one but not
onto.

PROOF.

(Injective): Suppose that a, b € Z and f(a) = f(b)
=ba=5b=a=0b.

Thus if a # b then f(a) # f(b) and f is injective.
(Not onto): Let be Z

| \
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EXAMPLE

Define f : Z — Z by f(x) = 5x. Show that f is one to one but not
onto.

PROOF.

(Injective): Suppose that a, b € Z and f(a) = f(b)
=ba=5b=a=0b.

Thus if a # b then f(a) # f(b) and f is injective.
(Not onto): Let be Z

Then f(x) =b=5x=b

| \
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EXAMPLE

Define f : Z — Z by f(x) = 5x. Show that f is one to one but not
onto.

PROOF.

(Injective): Suppose that a, b € Z and f(a) = f(b)
=b5a=5b=a=b.

Thus if a # b then f(a) # f(b) and f is injective.

(Not onto): Let be Z

Then f(x) =b=5x=b

There is a solution x € Z if and only if b is divisible by 5. Thus f
is not onto.

| \
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Define f : Z — Z by f(x) = 5x. Show that f is one to one but not
onto.

PROOF.

(Injective): Suppose that a,b € Z and f(a) = f(b)
=b5a=5b=a=b.

Thus if a # b then f(a) # f(b) and f is injective.

(Not onto): Let be Z

Then f(x) =b=5x=b

There is a solution x € Z if and only if b is divisible by 5. Thus f
is not onto.

For example there is no x € Z such that f(x) = 6. O

| \

v
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COMPOSITION OF MAPPINGS

Let g: A— Band f: B— C. Then the composite mapping
fog:A— Cis defined by

fog(x) = f(g(x))-
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COMPOSITION OF MAPPINGS

DEFINITION

Let g: A— Band f: B— C. Then the composite mapping
fog:A— Cis defined by

fog(x) = f(g(x))-

Let A={x€Z | x>0}andlet B={xecZ | x<0}.
Suppose that f: Z — A and g : A — B are defined by

f(x) =x* andg(x) = —x — 3.

Then
gof(x)=

4
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COMPOSITION OF MAPPINGS

DEFINITION

Let g: A— Band f: B— C. Then the composite mapping
fog:A— Cis defined by

fog(x) = f(g(x))-

Let A={x€Z | x>0}andlet B={xecZ | x<0}.
Suppose that f: Z — A and g : A — B are defined by

f(x) =x* andg(x) = —x — 3.

Then
gof(x)=g(f(x)) =

4
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COMPOSITION OF MAPPINGS

DEFINITION

Let g: A— Band f: B— C. Then the composite mapping
fog:A— Cis defined by

fog(x) = f(g(x))-

Let A={x€Z | x>0}andlet B={xecZ | x<0}.
Suppose that f: Z — A and g : A — B are defined by

f(x) =x* andg(x) = —x — 3.

Then
gof(x) = g(f(x)) = g(x*) =

4
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COMPOSITION OF MAPPINGS

DEFINITION

Let g: A— Band f: B— C. Then the composite mapping
fog:A— Cis defined by

fog(x) = f(g(x))-

Let A={x€Z | x>0}andlet B={xecZ | x<0}.
Suppose that f: Z — A and g : A — B are defined by

f(x) =x* andg(x) = —x — 3.

Then
gof(x) = g(F(x) = g(x") = —x*—3,

4
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Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).
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Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).

PROOF.

Note that (fog): B — D. Thus ((fog)oh): A— D.

4
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Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).

PROOF.

Note that (fog): B — D. Thus ((fog)oh): A— D.
Similarly, (goh): A— C. Thus (fo(goh)): A— D.
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Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).

PROOF.

Note that (fog): B — D. Thus ((fog)oh): A— D.
Similarly, (goh): A— C. Thus (fo(goh)): A— D.
So the two functions have the same domain.

Kevin James MTHSC 412 Section 1.2 —Mappings



Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).

PROOF.

Note that (fog): B — D. Thus ((fog)oh): A— D.
Similarly, (goh): A— C. Thus (fo(goh)): A— D.
So the two functions have the same domain.

Also for any x € A, we have

((fog)oh)(x) =
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Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).

PROOF.

Note that (fog): B — D. Thus ((fog)oh): A— D.
Similarly, (goh): A— C. Thus (fo(goh)): A— D.
So the two functions have the same domain.

Also for any x € A, we have

((fog)oh)(x) = (fog)(h(x))
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Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).

PROOF.

Note that (fog): B — D. Thus ((fog)oh): A— D.
Similarly, (goh): A— C. Thus (fo(goh)): A— D.
So the two functions have the same domain.

Also for any x € A, we have

((fog)oh)(x) = (fog)(h(x))
= f(g(h(x)))
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Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).

ProoF

Note that (fog): B — D. Thus ((fog)oh): A— D.
Similarly, (goh): A— C. Thus (fo(goh)): A— D.
So the two functions have the same domain.

Also for any x € A, we have

(Ffog)omx) = (fog)
Fe(hl
= f((goh

(h(x))
)
)(x))

X

Kevin James MTHSC 412 Section 1.2 —Mappings



Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).

ProoF

Note that (fog): B — D. Thus ((fog)oh): A— D.
Similarly, (goh): A— C. Thus (fo(goh)): A— D.
So the two functions have the same domain.

Also for any x € A, we have

((fog)oh)(x) = (fog)(h(x))
f(g(h(x)))

= f((goh)(x))
= (fo(goh)(x).
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Composition of functions is associative. That is, if h: A — B,
g:B—Candf:C— D, then(fog)oh="fo(goh).

ProoF

Note that (fog): B — D. Thus ((fog)oh): A— D.
Similarly, (goh): A— C. Thus (fo(goh)): A— D.
So the two functions have the same domain.

Also for any x € A, we have

((fog)oh)(x) = (fog)(h(x))
= f(g(h(x)))
= f((goh)(x))
= (fo(goh)(x).

Since the two functions have the same domain and agree on all
elements of the domain, they are equal. [
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Suppose that g : A— B and f : B — C are both surjective. Then
(fog):A— C is also surjective.
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THEOREM

Suppose that g : A— B and f : B — C are both surjective. Then
(fog):A— C is also surjective.

THEOREM

Suppose that g : A— B and f : B — C are both injective. Then
(fog): A— Cis also injective.
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THEOREM

Suppose that g : A— B and f : B — C are both surjective. Then
(fog): A— C is also surjective.

THEOREM

Suppose that g : A— B and f : B — C are both injective. Then
(fog): A— Cis also injective.

COROLLARY

Suppose that g : A— B and f : B — C are both bijections. Then
(fog):A— Cis also a bijection.
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