MTHSC 412 Section 1.2 –Mappings

Kevin James

CARTESIAN PRODUCTS

DEFINITION (CARTESIAN PRODUCT)

For two nonempty sets A and B, the Cartesian product of A and B is defined by

$$A \times B = \{(a, b) \mid a \in A; b \in B\}.$$

EXAMPLE

Let $A = \{1, 2, 3\}$ and let $B = \{a, b\}$. Then,

$$A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$$

DEFINITION (MAPPING)

Let A and B be two nonempty sets. A subset f of $A \times B$ is a mapping from A to B provided that for each $a \in A$ there is precisely one $b \in B$ such that $(a, b) \in f$.

EXAMPLE

Let $A = \{1, 2, 3\}$ and let $B = \{a, b\}$. Then,

- **1** $f = \{(1, a), (2, a), (3, b)\}$ is a mapping.
- ② $g = \{(1, a), (2, a), (1, b), (3, b)\}$ is not a mapping.

NOTATION

If f is a mapping from A to B, then we write

$$f:A\to B$$

or

$$A \stackrel{f}{\longrightarrow} B$$
.

DEFINITION

Suppose that A and B are nonempty sets and that $f \subseteq A \times B$ is a mapping from A to B. If $(a,b) \in f$ we write f(a) = b and say that b is the *image* of a under f.

EXAMPLE

Let
$$A = \{1, 2, 3\}$$
, $B = \{a, b\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Then

$$f(1) = a$$

$$f(2) = a$$

$$f(3) = b$$

Domain, Codomain, Range

DEFINITION

Let f be a mapping from A to B. The set A is called the *domain* of f and the set B is called the *codomain* of f. The range (or image) of f is the set

$$f(A) = \{ y \in B \mid y = f(x) \text{ for some } x \in A \}$$

= $\{ f(x) \mid x \in A \}.$

EXAMPLE

Suppose that
$$A = \{1, 2, 3\}$$
, $B = \{a, b, c\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Then the range of f is

$$f(A) = \{a, b\}.$$

DEFINITION

Suppose that $f: A \rightarrow B$, $S \subseteq A$ and $T \subseteq B$. Then

$$f(S) = \{f(x) \mid x \in S\}$$

= \{y \in B \ | y = f(x) \text{ for some } x \in S\}.

$$f^{-1}(T) = \{x \in A \mid f(x) \in T\}$$

Note

With notation as above we have $f(S) \subseteq B$ and $f^{-1}(T) \subseteq A$.

Let
$$A = \{1, 2, 3\}$$
, $B = \{a, b, c\}$ and $f = \{(1, a), (2, a), (3, b)\}$. Suppose that $S = \{1, 2\}$ and that $T = \{b, c\}$. Then, $f(S) = \{a\}$ $f^{-1}(T) = \{3\}$

Onto, Surjective

DEFINITION

Let $f: A \to B$. f is called *onto* or *surjective* if f(A) = B. In this case f is said to be a mapping of A onto B.

EXAMPLE

Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$. Then

- $f = \{(1, a), (2, a), (3, b)\}$ is not onto because $c \notin f(A)$.
- $g = \{(1, a), (2, c), (3, b)\}$ is onto.

Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is given by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is onto.

PROOF.

Suppose that $y \in \mathbb{Z}$ (the codomain).

Then letting $x = y - 5 \in \mathbb{Z}$ (the domain),

we have

$$f(x) = x + 5 = (y - 5) + 5 = y$$

Thus for all $y \in \mathbb{Z}$ (the codomain) there is an $x \in \mathbb{Z}$ (the domain) such that f(x) = y.

ONE TO ONE, INJECTIVE

DEFINITION

A mapping $f:A\to B$ is one to one or injective if different elements of A get mapped to different elements of B. Equivalently, f is one to one or injective if for all $b\in B$, $|f^{-1}(\{b\})|\leq 1$.

EXAMPLE

Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$. Then

- $f = \{(1, a), (2, a), (3, b)\}$ is not one to one because f(1) = f(2).
- $g = \{(1, a), (2, c), (3, b)\}$ is one to one.

Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Show that f is one to one.

Proof.

Suppose that $a, b \in \mathbb{Z}$ and that f(a) = f(b).

Then

$$f(a) = f(b)$$

$$\Rightarrow a+5 = b+5$$

$$\Rightarrow a = b$$

Thus if $a \neq b$ then $f(a) \neq f(b)$. So, f is injective.

One to One Correspondence, Bijection

DEFINITION

A mapping $f: A \rightarrow B$ is a one to one correspondence or a bijection if f is both injective and surjective.

EXAMPLE

Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f = \{(x, x + 5) \mid x \in \mathbb{Z}\}$. Then we have already seen that f is a bijection.

Define $f: \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ \frac{x+1}{2} & \text{if } x \text{ is odd.} \end{cases}$$

Show that f is onto but not one to one.

Proof.

(Onto): Suppose that $b \in \mathbb{Z}$ (the codomain).

We note that selecting x = 2b and y = 2b - 1 from the domain \mathbb{Z} yeilds f(x) = f(y) = b.

Thus for any $b \in \mathbb{Z}$ there is an $x \in \mathbb{Z}$ such that f(x) = b. So, f is onto.

(Not One to One): f(1) = 1 = f(2). Thus f is not one to one.

Define $f: \mathbb{Z} \to \mathbb{Z}$ by f(x) = 5x. Show that f is one to one but not onto.

Proof.

(Injective): Suppose that $a, b \in \mathbb{Z}$ and f(a) = f(b)

 \Rightarrow 5 $a = 5b \Rightarrow a = b$.

Thus if $a \neq b$ then $f(a) \neq f(b)$ and f is injective.

(Not onto): Let $b \in \mathbb{Z}$

Then $f(x) = b \Rightarrow 5x = b$

There is a solution $x \in \mathbb{Z}$ if and only if b is divisible by 5. Thus f is not onto.

For example there is no $x \in \mathbb{Z}$ such that f(x) = 6.

Composition of Mappings

DEFINITION

Let $g: A \to B$ and $f: B \to C$. Then the *composite mapping* $f \circ g: A \to C$ is defined by

$$f\circ g(x)=f(g(x)).$$

EXAMPLE

Let $A = \{x \in \mathbb{Z} \mid x \ge 0\}$ and let $B = \{x \in \mathbb{Z} \mid x \le 0\}$. Suppose that $f : \mathbb{Z} \to A$ and $g : A \to B$ are defined by

$$f(x) = x^4 \qquad \text{and} g(x) = -x - 3.$$

Then

$$g \circ f(x) = g(f(x)) = g(x^4) = -x^4 - 3.$$

FACT

Composition of functions is associative. That is, if $h : A \to B$, $g : B \to C$ and $f : C \to D$, then $(f \circ g) \circ h = f \circ (g \circ h)$.

PROOF.

Note that $(f \circ g) : B \to D$. Thus $((f \circ g) \circ h) : A \to D$. Similarly, $(g \circ h) : A \to C$. Thus $(f \circ (g \circ h)) : A \to D$.

So the two functions have the same domain.

Also for any $x \in A$, we have

$$((f \circ g) \circ h)(x) = (f \circ g)(h(x))$$

$$= f(g(h(x)))$$

$$= f((g \circ h)(x))$$

$$= (f \circ (g \circ h))(x).$$

Since the two functions have the same domain and agree on all elements of the domain, they are equal.

SECTION 1.3

THEOREM

Suppose that $g:A\to B$ and $f:B\to C$ are both surjective. Then $(f\circ g):A\to C$ is also surjective.

THEOREM

Suppose that $g: A \to B$ and $f: B \to C$ are both injective. Then $(f \circ g): A \to C$ is also injective.

COROLLARY

Suppose that $g:A\to B$ and $f:B\to C$ are both bijections. Then $(f\circ g):A\to C$ is also a bijection.