MTHSC 412 SECTION 1.4 –BINARY OPERATIONS

Kevin James

DEFINITION

A binary operation on a nonempty set A is a mapping f form $A \times A$ to A. That is $f \subseteq A \times A \times A$ and f has the property that for each $(a,b) \in A \times A$, there is precisely one $c \in A$ such that $(a,b,c) \in f$.

DEFINITION

A binary operation on a nonempty set A is a mapping f form $A \times A$ to A. That is $f \subseteq A \times A \times A$ and f has the property that for each $(a,b) \in A \times A$, there is precisely one $c \in A$ such that $(a,b,c) \in f$.

NOTATION

If f is a binary operation on A and if $(a, b, c) \in f$ then we have already seen the notation f(a, b) = c. For binary operations, it is customary to write instead

$$a f b = c$$
,

A binary operation on a nonempty set A is a mapping f form $A \times A$ to A. That is $f \subseteq A \times A \times A$ and f has the property that for each $(a,b) \in A \times A$, there is precisely one $c \in A$ such that $(a,b,c) \in f$.

NOTATION

If f is a binary operation on A and if $(a, b, c) \in f$ then we have already seen the notation f(a, b) = c. For binary operations, it is customary to write instead

af
$$b = c$$
.

or perhaps

$$a * b = c$$
.

Some binary operations on $\ensuremath{\mathbb{Z}}$ are

$$1 x * y = x + y$$

Some binary operations on $\ensuremath{\mathbb{Z}}$ are

$$1 x * y = x + y$$

2
$$x * y = x - y$$

Some binary operations on $\mathbb Z$ are

$$1 x * y = x + y$$

2
$$x * y = x - y$$

$$x * y = xy$$

Some binary operations on $\mathbb Z$ are

- 1 x * y = x + y
- 2 x * y = x y
- **3** x * y = xy
- **4** x * y = x + 2y + 3

Some binary operations on $\mathbb Z$ are

- 1 x * y = x + y
- 2 x * y = x y
- **3** x * y = xy
- **4** x * y = x + 2y + 3
- **6** x * y = 1 + xy

DEFINITION

Suppose that * is a binary operation of a nonempty set A.

• * is commutative if a * b = b * a for all $a, b \in A$.

Definition

Suppose that * is a binary operation of a nonempty set A.

- * is commutative if a * b = b * a for all $a, b \in A$.
- * is associative if (a*b)*c = a*(b*c).

Definition

Suppose that * is a binary operation of a nonempty set A.

- * is commutative if a * b = b * a for all $a, b \in A$.
- * is associative if (a * b) * c = a * (b * c).

EXAMPLE

lacktriangle Multiplication and addition give operators on $\mathbb Z$ which are both commutative and associative.

DEFINITION

Suppose that * is a binary operation of a nonempty set A.

- * is commutative if a * b = b * a for all $a, b \in A$.
- * is associative if (a*b)*c = a*(b*c).

- **1** Multiplication and addition give operators on \mathbb{Z} which are both commutative and associative.
- 2 Subtraction is an operation on \mathbb{Z} which is neither commutative nor associative.

DEFINITION

Suppose that * is a binary operation of a nonempty set A.

- * is commutative if a * b = b * a for all $a, b \in A$.
- * is associative if (a*b)*c = a*(b*c).

- **1** Multiplication and addition give operators on \mathbb{Z} which are both commutative and associative.
- 2 Subtraction is an operation on \mathbb{Z} which is neither commutative nor associative.
- **3** The binary operation on \mathbb{Z} given by x * y = 1 + xy is commutative but not associative.

DEFINITION

Suppose that * is a binary operation of a nonempty set A.

- * is commutative if a * b = b * a for all $a, b \in A$.
- * is associative if (a*b)*c = a*(b*c).

- **1** Multiplication and addition give operators on \mathbb{Z} which are both commutative and associative.
- 2 Subtraction is an operation on \mathbb{Z} which is neither commutative nor associative.
- **3** The binary operation on \mathbb{Z} given by x * y = 1 + xy is commutative but not associative. For example (1*2)*3 = 3*3 = 10 while 1*(2*3) = 1*(7) = 8.

Definition

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a*b \in B$ for all $a,b \in B$, then we say that B is closed under *.

<u>De</u>finition

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a*b \in B$ for all $a, b \in B$, then we say that B is closed under *.

EXAMPLE

Consider multiplication on $\ensuremath{\mathbb{Z}}$. The set of even integers is closed under addition.

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a*b \in B$ for all $a,b \in B$, then we say that B is closed under *.

EXAMPLE

Consider multiplication on $\ensuremath{\mathbb{Z}}$. The set of even integers is closed under addition.

Proof.

Suppose that $a, b \in \mathbb{Z}$ are even.

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a*b \in B$ for all $a,b \in B$, then we say that B is closed under *.

EXAMPLE

Consider multiplication on $\ensuremath{\mathbb{Z}}$. The set of even integers is closed under addition.

Proof.

Suppose that $a, b \in \mathbb{Z}$ are even.

Then there are $x, y \in \mathbb{Z}$ such that a = 2x and b = 2y.

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a*b \in B$ for all $a, b \in B$, then we say that B is closed under *.

EXAMPLE

Consider multiplication on $\ensuremath{\mathbb{Z}}$. The set of even integers is closed under addition.

PROOF.

Suppose that $a, b \in \mathbb{Z}$ are even.

Then there are $x, y \in \mathbb{Z}$ such that a = 2x and b = 2y.

Thus a + b =

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a*b \in B$ for all $a, b \in B$, then we say that B is closed under *.

EXAMPLE

Consider multiplication on $\ensuremath{\mathbb{Z}}$. The set of even integers is closed under addition.

PROOF.

Suppose that $a, b \in \mathbb{Z}$ are even.

Then there are $x, y \in \mathbb{Z}$ such that a = 2x and b = 2y.

Thus
$$a + b = 2x + 2y =$$

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a*b \in B$ for all $a,b \in B$, then we say that B is closed under *.

EXAMPLE

Consider multiplication on $\ensuremath{\mathbb{Z}}$. The set of even integers is closed under addition.

PROOF.

Suppose that $a, b \in \mathbb{Z}$ are even.

Then there are $x, y \in \mathbb{Z}$ such that a = 2x and b = 2y.

Thus a + b = 2x + 2y = 2(x + y) which is even.

Definition

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a*b \in B$ for all $a, b \in B$, then we say that B is closed under *.

EXAMPLE

Consider multiplication on $\ensuremath{\mathbb{Z}}$. The set of even integers is closed under addition.

Proof.

Suppose that $a, b \in \mathbb{Z}$ are even.

Then there are $x, y \in \mathbb{Z}$ such that a = 2x and b = 2y.

Thus a + b = 2x + 2y = 2(x + y) which is even.

Since a and b were arbitrary even integers, it follows that the set of even integers is closed under addition.

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is called an identity element with respect to * if

$$e * x = x = x * e$$

for all $x \in A$.

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is called an identity element with respect to * if

$$e * x = x = x * e$$

for all $x \in A$.

EXAMPLE

1 is an identity element for multiplication on the integers.

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is called an identity element with respect to * if

$$e * x = x = x * e$$

for all $x \in A$.

- 1 is an identity element for multiplication on the integers.
- 2 0 is an identity element for addition on the integers.

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is called an identity element with respect to * if

$$e * x = x = x * e$$

for all $x \in A$.

- 1 is an identity element for multiplication on the integers.
- 2 0 is an identity element for addition on the integers.
- **3** If * is defined on \mathbb{Z} by x*y=x+y+1 Then ___ is the identity.

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is called an identity element with respect to * if

$$e * x = x = x * e$$

for all $x \in A$.

- 1 is an identity element for multiplication on the integers.
- 2 0 is an identity element for addition on the integers.
- **3** If * is defined on \mathbb{Z} by x * y = x + y + 1 Then $\underline{-1}$ is the identity.

DEFINITION

Let * be a binary operation on a nonempty set A. An element e is called an identity element with respect to * if

$$e * x = x = x * e$$

for all $x \in A$.

- 1 is an identity element for multiplication on the integers.
- 2 0 is an identity element for addition on the integers.
- **3** If * is defined on \mathbb{Z} by x * y = x + y + 1 Then $\underline{-1}$ is the identity.
- ① The operation * defined on \mathbb{Z} by x*y=1+xy has no identity element.

RIGHT, LEFT AND TWO-SIDED INVERSES

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that e is an identity element with respect to *. Suppose that $a \in A$.

 If there exists b ∈ A such that a * b = e then b is called a right inverse of a with respect to *.

RIGHT, LEFT AND TWO-SIDED INVERSES

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that e is an identity element with respect to *. Suppose that $a \in A$.

- If there exists b ∈ A such that a * b = e then b is called a right inverse of a with respect to *.
- If there exists b ∈ A such that b * a = e then b is called a left inverse of a with respect to *.

RIGHT, LEFT AND TWO-SIDED INVERSES

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that e is an identity element with respect to *. Suppose that $a \in A$.

- If there exists b ∈ A such that a * b = e then b is called a right inverse of a with respect to *.
- If there exists b ∈ A such that b * a = e then b is called a left inverse of a with respect to *.
- If b ∈ A is both a right and left inverse of a with respect to *
 then we simply say that b is an inverse of a and we say that a
 is invertible.

① Consider the operation of addition on the integers. For any integer a, the inverse of a with respect to addition is -a.

- 1 Consider the operation of addition on the integers. For any integer a, the inverse of a with respect to addition is -a.
- 2 Consider the operation of multiplication on $\mathbb Z$. The invertible elements are _ and ___.

- **1** Consider the operation of addition on the integers. For any integer a, the inverse of a with respect to addition is -a.
- 2 Consider the operation of multiplication on $\mathbb Z$. The invertible elements are $1\$ and $\ -1\$.

- ① Consider the operation of addition on the integers. For any integer a, the inverse of a with respect to addition is -a.
- 2 Consider the operation of multiplication on $\mathbb Z$. The invertible elements are $\underline 1$ and $\underline {-1}$.

FACT

Suppose that * is a binary operation on a nonempty set A. If there is an identity element with respect to * then it is unique. In the case that there is an identity element and that * is associative then for each $a \in A$ if there is an inverse of a then it is unique.