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Permutations

Definition

A bijection from a set A to itself is called a permutation on A.

Notation

Suppose that A is nonempty.

• We denote by S(A) the set of all permutations on A.

• We will denote by M(A) the set of all mappings form A to A.

• In the special case that the set A = {1, 2, . . . , n}, we use the
notation Sn = S(A).
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Remark

Suppose that A is a nonempty set. Then composition of functions
is an associative binary operation on M(A). The identity element
IA of M(A) under composition of functions is given by

IA(x) = x for all x ∈ A.

Proof.

For any f ∈M(A),
f ◦ IA(x) = f (IA(x)) = f (x).
Thus f ◦ IA = f .
Also, IA ◦ f (x) = IA(f (x)) = = f (x).
Thus, IA ◦ f = f .
Thus IA is the identity element.
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Example

Consider the maps f , g ∈M(Z) defined by

f (x) = 2x

g(x) =

{
x
2 if x is even,

4 if x is odd.

Then, g ◦ f (x) = g(f (x)) = g(2x) = x .
Thus g ◦ f = IZ.
So, g is a left inverse of f .

However, f ◦ g(x) = f (g(x)) =

{
f (x/2)

f (4)
=

{
x if x is even,

8 if x is odd.
So, f ◦ g 6= IZ and g is not a right inverse of f .
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Left Inverses and Injections

Lemma

Let A be a nonempty set and let f : A→ A. Then f is injective if
and only if f has a left inverse.
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Proof.

(⇐)

Suppose first that f has a left inverse g .
The we have,
f (a) = f (b)⇒ g(f (a)) = g(f (b))⇒ IA(a) = IA(b)⇒ a = b.
Thus f is injective.

(⇒)

Now suppose that f is injective.
Let a0 be any fixed element of A.
Define g ∈M(A) as follows.

g(x) =

{
y if there exists y ∈ A such that f (y) = x ,

a0 otherwise
Note that when such y exists it is unique because f is injective.
So, g is a well-defined mapping.
For all x ∈ A we have g ◦ f (x) = g(f (x)) = x .
So, g ◦ f = IA and g is a left inverse of f .
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Right Inverses and Surjections

Lemma

Let A be a nonempty set and f : A→ A. Then f is surjective if
and only if f has a right inverse.
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Inverses and Permutations

Theorem

Let f : A→ A. Then f is invertible if and only if f is a
permutation on A.

Proof.

(⇒) Suppose first that f is invertible.
Then f has an inverse g .
Since g is a left and right inverse, it follows form the lemmas that
f is bijective and therefore is a permutation on A.
(⇐) Now suppose that f is a permutation.
Since f is injective, it has a left inverse g .
Since f is surjective, it has a right inverse h.
So, we have g = g ◦ IA = g ◦ (f ◦ h) = (g ◦ f ) ◦ h = IA ◦ h = h.
Thus f is invertible.
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Note

1 Composition of functions is an associative binary operation on
M(A) with identity element IA.

2 f ∈M(A) is invertible under composition of functions if and
only if f ∈ S(A).

3 We will denote the inverse of f ∈ S(A) by f −1.

4 S(A) is closed under composition of functions.

5 That is, if f , g ∈ S(A), then f ◦ g ∈ S(A).

6 Thus, composition of functions is an associative binary
operation of S(A) with identity element IA.
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