MTHSC 412 Section 1.5 –Permutations and Inverses

Kevin James

Kevin James MTHSC 412 Section 1.5 –Permutations and Inverses

김 글 아이지 글 아

A bijection from a set A to itself is called a *permutation* on A.

・ 回 ト ・ ヨ ト ・ ヨ ト

A bijection from a set A to itself is called a *permutation* on A.

NOTATION

Suppose that A is nonempty.

• We denote by S(A) the set of all permutations on A.

- 4 回 2 - 4 回 2 - 4 回 2

A bijection from a set A to itself is called a *permutation* on A.

NOTATION

Suppose that A is nonempty.

- We denote by $\mathcal{S}(A)$ the set of all permutations on A.
- We will denote by $\mathcal{M}(A)$ the set of all mappings form A to A.

・ 同 ト ・ ヨ ト ・ ヨ ト

A bijection from a set A to itself is called a *permutation* on A.

NOTATION

Suppose that A is nonempty.

- We denote by S(A) the set of all permutations on A.
- We will denote by $\mathcal{M}(A)$ the set of all mappings form A to A.
- In the special case that the set $A = \{1, 2, ..., n\}$, we use the notation $S_n = S(A)$.

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

 $I_A(x) = x$ for all $x \in A$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any $f \in \mathcal{M}(A)$,

(4 同) (4 回) (4 回)

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any $f \in \mathcal{M}(A)$, $f \circ I_A(x) =$

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any
$$f \in \mathcal{M}(A)$$
,
 $f \circ I_A(x) = f(I_A(x)) =$

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any
$$f \in \mathcal{M}(A)$$
,
 $f \circ I_A(x) = f(I_A(x)) = f(x)$.

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any
$$f \in \mathcal{M}(A)$$
,
 $f \circ I_A(x) = f(I_A(x)) = f(x)$.
Thus $f \circ I_A = f$.

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any
$$f \in \mathcal{M}(A)$$
,
 $f \circ I_A(x) = f(I_A(x)) = f(x)$.
Thus $f \circ I_A = f$.
Also, $I_A \circ f(x) =$

(4 回) (4 回) (4 回)

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any
$$f \in \mathcal{M}(A)$$
,
 $f \circ I_A(x) = f(I_A(x)) = f(x)$.
Thus $f \circ I_A = f$.
Also, $I_A \circ f(x) = I_A(f(x)) =$

(4 回) (4 回) (4 回)

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any
$$f \in \mathcal{M}(A)$$
,
 $f \circ I_A(x) = f(I_A(x)) = f(x)$.
Thus $f \circ I_A = f$.
Also, $I_A \circ f(x) = I_A(f(x)) = = f(x)$.

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any
$$f \in \mathcal{M}(A)$$
,
 $f \circ I_A(x) = f(I_A(x)) = f(x)$.
Thus $f \circ I_A = f$.
Also, $I_A \circ f(x) = I_A(f(x)) = = f(x)$.
Thus, $I_A \circ f = f$.

(4 回) (4 回) (4 回)

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any
$$f \in \mathcal{M}(A)$$
,
 $f \circ I_A(x) = f(I_A(x)) = f(x)$.
Thus $f \circ I_A = f$.
Also, $I_A \circ f(x) = I_A(f(x)) = = f(x)$.
Thus, $I_A \circ f = f$.
Thus I_A is the identity element.

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

▲圖▶ ▲屋▶ ▲屋▶

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

$$g(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

・ 母 と ・ ヨ と ・ ヨ と

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

$$g(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

Then, $g \circ f(x) =$

3

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

g(x) =
$$\begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

Then, $g \circ f(x) = g(f(x)) =$

イロト イヨト イヨト イヨト

3

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

$$g(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

Then,
$$g \circ f(x) = g(f(x)) = g(2x) =$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

g(x) =
$$\begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

Then,
$$g \circ f(x) = g(f(x)) = g(2x) = x$$
.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

g(x) =
$$\begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

Then,
$$g \circ f(x) = g(f(x)) = g(2x) = x$$
.
Thus $g \circ f = I_{\mathbb{Z}}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

g(x) =
$$\begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

Then,
$$g \circ f(x) = g(f(x)) = g(2x) = x$$
.
Thus $g \circ f = I_{\mathbb{Z}}$.
So, g is a left inverse of f.

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

g(x) =
$$\begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

Then,
$$g \circ f(x) = g(f(x)) = g(2x) = x$$
.
Thus $g \circ f = I_{\mathbb{Z}}$.
So, g is a left inverse of f.
However, $f \circ g(x) = f(g(x)) = \begin{cases} f(x/2) \\ f(4) \end{cases} = \begin{cases} x & \text{if } x \text{ is even,} \\ 8 & \text{if } x \text{ is odd.} \end{cases}$

・ロン ・回と ・ヨと ・

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

g(x) =
$$\begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

Then,
$$g \circ f(x) = g(f(x)) = g(2x) = x$$
.
Thus $g \circ f = I_{\mathbb{Z}}$.
So, g is a left inverse of f.
However, $f \circ g(x) = f(g(x)) = \begin{cases} f(x/2) \\ f(4) \end{cases} = \begin{cases} x & \text{if } x \text{ is even,} \\ 8 & \text{if } x \text{ is odd.} \end{cases}$
So, $f \circ g \neq I_{\mathbb{Z}}$ and g is not a right inverse of f.

・ロト ・回ト ・ヨト ・ヨト

LEFT INVERSES AND INJECTIONS

LEMMA

Let A be a nonempty set and let $f : A \rightarrow A$. Then f is injective if and only if f has a left inverse.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Proof. (⇐) (⇒)

Kevin James MTHSC 412 Section 1.5 –Permutations and Inverses

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

(\Leftarrow) Suppose first that f has a left inverse g.

(⇒)

(\Leftarrow) Suppose first that f has a left inverse g. The we have, $f(a) = f(b) \Rightarrow$

(⇒)

・ロト ・回ト ・ヨト ・ヨト

(\Leftarrow) Suppose first that f has a left inverse g. The we have, $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow$ (\Rightarrow)

Kevin James

イロト イヨト イヨト イヨト

MTHSC 412 Section 1.5 –Permutations and Inverses

3

(\Leftarrow) Suppose first that f has a left inverse g. The we have, $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow$ (\Rightarrow)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

(\Leftarrow) Suppose first that f has a left inverse g. The we have, $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b.$ (\Rightarrow)

・ロン ・回 と ・ 回 と ・ 回 と

3

(\Leftarrow) Suppose first that f has a left inverse g. The we have, $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b$. Thus f is injective. (\Rightarrow)

・ 同 ト ・ ヨ ト ・ ヨ ト

3

(\Leftarrow) Suppose first that f has a left inverse g. The we have, $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b$. Thus f is injective.

 (\Rightarrow) Now suppose that f is injective.

・ 同 ト ・ 三 ト ・ 三 ト

(\Leftarrow) Suppose first that f has a left inverse g. The we have, $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b$. Thus f is injective. (\Rightarrow) Now suppose that f is injective. Let a_0 be any fixed element of A.

(\Leftarrow) Suppose first that f has a left inverse g. The we have, $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b$. Thus f is injective. (\Rightarrow) Now suppose that f is injective. Let a_0 be any fixed element of A. Define $g \in \mathcal{M}(A)$ as follows.

(\Leftarrow) Suppose first that f has a left inverse g. The we have, $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b$. Thus f is injective. (\Rightarrow) Now suppose that f is injective. Let a_0 be any fixed element of A. Define $g \in \mathcal{M}(A)$ as follows. $g(x) = \begin{cases} y & \text{if there exists } y \in A \text{ such that } f(y) = x, \\ a_0 & \text{otherwise} \end{cases}$

(\Leftarrow) Suppose first that f has a left inverse g. The we have. $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b.$ Thus f is injective. (\Rightarrow) Now suppose that f is injective. Let a_0 be any fixed element of A. Define $g \in \mathcal{M}(A)$ as follows. $g(x) = \begin{cases} y & \text{if there exists } y \in A \text{ such that } f(y) = x, \\ a_0 & \text{otherwise} \end{cases}$ Note that when such y exists it is unique because f is injective. So, g is a well-defined mapping.

(\Leftarrow) Suppose first that f has a left inverse g. The we have. $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b.$ Thus f is injective. (\Rightarrow) Now suppose that f is injective. Let a_0 be any fixed element of A. Define $g \in \mathcal{M}(A)$ as follows. $g(x) = \begin{cases} y & \text{if there exists } y \in A \text{ such that } f(y) = x, \\ a_0 & \text{otherwise} \end{cases}$ Note that when such y exists it is unique because f is injective. So, g is a *well-defined* mapping. For all $x \in A$ we have $g \circ f(x) =$

向下 イヨト イヨト

(\Leftarrow) Suppose first that f has a left inverse g. The we have. $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b.$ Thus f is injective. (\Rightarrow) Now suppose that f is injective. Let a_0 be any fixed element of A. Define $g \in \mathcal{M}(A)$ as follows. $g(x) = \begin{cases} y & \text{if there exists } y \in A \text{ such that } f(y) = x, \\ a_0 & \text{otherwise} \end{cases}$ Note that when such y exists it is unique because f is injective. So, g is a *well-defined* mapping. For all $x \in A$ we have $g \circ f(x) = g(f(x)) =$

(\Leftarrow) Suppose first that f has a left inverse g. The we have. $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b.$ Thus f is injective. (\Rightarrow) Now suppose that f is injective. Let a_0 be any fixed element of A. Define $g \in \mathcal{M}(A)$ as follows. $g(x) = \begin{cases} y & \text{if there exists } y \in A \text{ such that } f(y) = x, \\ a_0 & \text{otherwise} \end{cases}$ Note that when such y exists it is unique because f is injective. So, g is a *well-defined* mapping. For all $x \in A$ we have $g \circ f(x) = g(f(x)) = x$.

(\Leftarrow) Suppose first that f has a left inverse g. The we have. $f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b.$ Thus f is injective. (\Rightarrow) Now suppose that f is injective. Let a_0 be any fixed element of A. Define $g \in \mathcal{M}(A)$ as follows. $g(x) = \begin{cases} y & \text{if there exists } y \in A \text{ such that } f(y) = x, \\ a_0 & \text{otherwise} \end{cases}$ Note that when such y exists it is unique because f is injective. So, g is a *well-defined* mapping. For all $x \in A$ we have $g \circ f(x) = g(f(x)) = x$. So, $g \circ f = I_A$ and g is a left inverse of f.

RIGHT INVERSES AND SURJECTIONS

LEMMA

Let A be a nonempty set and $f : A \rightarrow A$. Then f is surjective if and only if f has a right inverse.

向下 イヨト イヨト

(⇔)

Kevin James MTHSC 412 Section 1.5 –Permutations and Inverses

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

(\Leftarrow) Suppose first that f has a right inverse g.

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$.

イロト イヨト イヨト イヨト

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b).

・ロト ・回ト ・ヨト ・ヨト

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then f(a) =

・ロト ・回ト ・ヨト ・ヨト

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then f(a) = f(g(b)) =

・ 同 ト ・ 臣 ト ・ 臣 ト

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) =$

▲祠 ▶ ▲ 臣 ▶ ★ 臣 ▶

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$.

▲祠 ▶ ▲ 臣 ▶ ★ 臣 ▶

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective.

(4月) イヨト イヨト

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow)

(4月) イヨト イヨト

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective.

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows.

伺 ト イヨト イヨト

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows. Let $a \in A$.

伺 ト イヨト イヨト

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows. Let $a \in A$. Since f is surjective, $f^{-1}(\{a\})$ is nonempty.

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows. Let $a \in A$. Since f is surjective, $f^{-1}(\{a\})$ is nonempty.

Choose $x \in f^{-1}(\{a\})$ and put g(a) = x.

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows. Let $a \in A$. Since f is surjective, $f^{-1}(\{a\})$ is nonempty.

Choose $x \in f^{-1}(\{a\})$ and put g(a) = x.

We must do this for each $a \in A$.

- (目) - (日) - (日)

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows. Let $a \in A$. Since f is surjective, $f^{-1}(\{a\})$ is nonempty. Choose $x \in f^{-1}(\{a\})$ and put g(a) = x. We must do this for each $a \in A$.

Then, $f \circ g(a) =$

(4月) イヨト イヨト

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows. Let $a \in A$. Since f is surjective, $f^{-1}(\{a\})$ is nonempty. Choose $x \in f^{-1}(\{a\})$ and put g(a) = x. We must do this for each $a \in A$.

Then,
$$f \circ g(a) = f(g(a)) =$$

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows. Let $a \in A$. Since f is surjective, $f^{-1}(\{a\})$ is nonempty. Choose $x \in f^{-1}(\{a\})$ and put g(a) = x. We must do this for each $a \in A$.

Then,
$$f \circ g(a) = f(g(a)) = f(x) =$$

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows. Let $a \in A$. Since f is surjective, $f^{-1}(\{a\})$ is nonempty. Choose $x \in f^{-1}(\{a\})$ and put g(a) = x. We must do this for each $a \in A$.

Then,
$$f \circ g(a) = f(g(a)) = f(x) = a$$
.

(\Leftarrow) Suppose first that f has a right inverse g. Now let $b \in A$. Put a = g(b). Then $f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$. Since $b \in A$ was arbitrary, it follows that f is surjective. (\Rightarrow) Suppose now that f is surjective. We will construct a right inverse g of f (using the axiom of choice) as follows. Let $a \in A$. Since f is surjective, $f^{-1}(\{a\})$ is nonempty. Choose $x \in f^{-1}(\{a\})$ and put g(a) = x. We must do this for each $a \in A$. Then, $f \circ g(a) = f(g(a)) = f(x) = a$. Thus $f \circ g = I_A$ and g is a right inverse of f.

- 4 同 6 4 日 6 4 日 6

Theorem

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Theorem

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

PROOF.

 (\Rightarrow) Suppose first that f is invertible.

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

Theorem

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

(\Rightarrow) Suppose first that f is invertible. Then f has an inverse g.

э

-

Theorem

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

 (\Rightarrow) Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

A (1) > A (1) > A

Theorem

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

 (\Rightarrow) Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

(\Leftarrow) Now suppose that f is a permutation.

Theorem

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

 (\Rightarrow) Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

(\Leftarrow) Now suppose that f is a permutation.

Since f is injective, it has a left inverse g.

Theorem

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

 (\Rightarrow) Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

(\Leftarrow) Now suppose that f is a permutation.

Since f is injective, it has a left inverse g.

Since f is surjective, it has a right inverse h.

- A 🗇 🕨 - A 🖻 🕨 - A 🖻

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

$$(\Rightarrow)$$
 Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

(\Leftarrow) Now suppose that f is a permutation.

Since f is injective, it has a left inverse g.

Since f is surjective, it has a right inverse h.

So, we have $g = g \circ I_A =$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

$$(\Rightarrow)$$
 Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

(\Leftarrow) Now suppose that f is a permutation.

Since f is injective, it has a left inverse g.

Since f is surjective, it has a right inverse h.

So, we have $g = g \circ I_A = g \circ (f \circ h) =$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

$$(\Rightarrow)$$
 Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

(\Leftarrow) Now suppose that f is a permutation.

Since f is injective, it has a left inverse g.

Since f is surjective, it has a right inverse h.

So, we have
$$g = g \circ I_A = g \circ (f \circ h) = (g \circ f) \circ h =$$

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

$$(\Rightarrow)$$
 Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

(\Leftarrow) Now suppose that f is a permutation.

Since f is injective, it has a left inverse g.

Since f is surjective, it has a right inverse h.

So, we have $g = g \circ I_A = g \circ (f \circ h) = (g \circ f) \circ h = I_A \circ h =$

- 4 同 2 4 日 2 4 日 2

Let $f : A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

$$(\Rightarrow)$$
 Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

(\Leftarrow) Now suppose that f is a permutation.

Since f is injective, it has a left inverse g.

Since f is surjective, it has a right inverse h.

So, we have
$$g = g \circ I_A = g \circ (f \circ h) = (g \circ f) \circ h = I_A \circ h = h$$
.
Thus f is invertible.

- A 🗇 N - A 🖻 N - A 🖻 N

1 Composition of functions is an associative binary operation on $\mathcal{M}(A)$ with identity element I_A .

回 と く ヨ と く ヨ と

- **1** Composition of functions is an associative binary operation on $\mathcal{M}(A)$ with identity element I_A .
- *f* ∈ *M*(*A*) is invertible under composition of functions if and only if *f* ∈ *S*(*A*).

向下 イヨト イヨト

- **1** Composition of functions is an associative binary operation on $\mathcal{M}(A)$ with identity element I_A .
- *f* ∈ *M*(*A*) is invertible under composition of functions if and only if *f* ∈ *S*(*A*).
- **3** We will denote the inverse of $f \in \mathcal{S}(A)$ by f^{-1} .

向下 イヨト イヨト

- **1** Composition of functions is an associative binary operation on $\mathcal{M}(A)$ with identity element I_A .
- ② $f \in \mathcal{M}(A)$ is invertible under composition of functions if and only if $f \in S(A)$.
- **3** We will denote the inverse of $f \in \mathcal{S}(A)$ by f^{-1} .
- **4** S(A) is closed under composition of functions.

- **1** Composition of functions is an associative binary operation on $\mathcal{M}(A)$ with identity element I_A .
- *f* ∈ *M*(*A*) is invertible under composition of functions if and only if *f* ∈ *S*(*A*).
- **3** We will denote the inverse of $f \in S(A)$ by f^{-1} .
- **4** S(A) is closed under composition of functions.
- **6** That is, if $f, g \in \mathcal{S}(A)$, then $f \circ g \in \mathcal{S}(A)$.

- **1** Composition of functions is an associative binary operation on $\mathcal{M}(A)$ with identity element I_A .
- *f* ∈ *M*(*A*) is invertible under composition of functions if and only if *f* ∈ *S*(*A*).
- **8** We will denote the inverse of $f \in \mathcal{S}(A)$ by f^{-1} .
- **4** S(A) is closed under composition of functions.
- **6** That is, if $f, g \in \mathcal{S}(A)$, then $f \circ g \in \mathcal{S}(A)$.
- **6** Thus, composition of functions is an associative binary operation of S(A) with identity element I_A .

・ 同 ト ・ ヨ ト ・ ヨ ト

- **1** Composition of functions is an associative binary operation on $\mathcal{M}(A)$ with identity element I_A .
- *f* ∈ *M*(*A*) is invertible under composition of functions if and only if *f* ∈ *S*(*A*).
- **8** We will denote the inverse of $f \in \mathcal{S}(A)$ by f^{-1} .
- **4** $\mathcal{S}(A)$ is closed under composition of functions.
- **6** That is, if $f, g \in \mathcal{S}(A)$, then $f \circ g \in \mathcal{S}(A)$.
- **6** Thus, composition of functions is an associative binary operation of S(A) with identity element I_A .
- **7** If $f \in \mathcal{S}(A)$ then $f^{-1} \in \mathcal{S}(A)$ also.

・ 同 ト ・ ヨ ト ・ ヨ ト

- **1** Composition of functions is an associative binary operation on $\mathcal{M}(A)$ with identity element I_A .
- *f* ∈ *M*(*A*) is invertible under composition of functions if and only if *f* ∈ *S*(*A*).
- **8** We will denote the inverse of $f \in \mathcal{S}(A)$ by f^{-1} .
- **4** $\mathcal{S}(A)$ is closed under composition of functions.
- **6** That is, if $f, g \in \mathcal{S}(A)$, then $f \circ g \in \mathcal{S}(A)$.
- **6** Thus, composition of functions is an associative binary operation of S(A) with identity element I_A .
- **7** If $f \in \mathcal{S}(A)$ then $f^{-1} \in \mathcal{S}(A)$ also.

・ 同 ト ・ ヨ ト ・ ヨ ト