MTHSC 412 Section 1.5 –Permutations and Inverses

Kevin James

PERMUTATIONS

Definition

A bijection from a set A to itself is called a *permutation* on A.

NOTATION

Suppose that A is nonempty.

- We denote by S(A) the set of all permutations on A.
- We will denote by $\mathcal{M}(A)$ the set of all mappings form A to A.
- In the special case that the set $A = \{1, 2, ..., n\}$, we use the notation $S_n = S(A)$.

REMARK

Suppose that A is a nonempty set. Then composition of functions is an associative binary operation on $\mathcal{M}(A)$. The identity element I_A of $\mathcal{M}(A)$ under composition of functions is given by

$$I_A(x) = x$$
 for all $x \in A$.

Proof.

For any $f \in \mathcal{M}(A)$,

$$f\circ I_A(x)=f(I_A(x))=f(x).$$

Thus $f \circ I_A = f$.

Also,
$$I_A \circ f(x) = I_A(f(x)) == f(x)$$
.

Thus, $I_A \circ f = f$.

Thus I_A is the identity element.

EXAMPLE

Consider the maps $f,g\in\mathcal{M}(\mathbb{Z})$ defined by

$$f(x) = 2x$$

$$g(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 4 & \text{if } x \text{ is odd.} \end{cases}$$

Then, $g \circ f(x) = g(f(x)) = g(2x) = x$.

Thus $g \circ f = I_{\mathbb{Z}}$.

So, g is a left inverse of f.

However, $f \circ g(x) = f(g(x)) = \begin{cases} f(x/2) \\ f(4) \end{cases} = \begin{cases} x & \text{if } x \text{ is even,} \\ 8 & \text{if } x \text{ is odd.} \end{cases}$

So, $f \circ g \neq I_{\mathbb{Z}}$ and g is not a right inverse of f.

LEFT INVERSES AND INJECTIONS

LEMMA

Let A be a nonempty set and let $f: A \rightarrow A$. Then f is injective if and only if f has a left inverse.

Proof.

(\Leftarrow) Suppose first that f has a left inverse g.

The we have,

$$f(a) = f(b) \Rightarrow g(f(a)) = g(f(b)) \Rightarrow I_A(a) = I_A(b) \Rightarrow a = b.$$

Thus f is injective.

 (\Rightarrow) Now suppose that f is injective.

Let a_0 be any fixed element of A.

Define $g \in \mathcal{M}(A)$ as follows.

$$g(x) = \begin{cases} y & \text{if there exists } y \in A \text{ such that } f(y) = x, \\ a_0 & \text{otherwise} \end{cases}$$

Note that when such y exists it is unique because f is injective.

So, g is a well-defined mapping.

For all $x \in A$ we have $g \circ f(x) = g(f(x)) = x$.

So, $g \circ f = I_A$ and g is a left inverse of f.

RIGHT INVERSES AND SURJECTIONS

LEMMA

Let A be a nonempty set and $f: A \rightarrow A$. Then f is surjective if and only if f has a right inverse.

Proof.

(\Leftarrow) Suppose first that f has a right inverse g.

Now let $b \in A$.

Put a = g(b).

Then
$$f(a) = f(g(b)) = f \circ g(b) = I_A(b) = b$$
.

Since $b \in A$ was arbitrary, it follows that f is surjective.

 (\Rightarrow) Suppose now that f is surjective.

We will construct a right inverse g of f (using the axiom of choice) as follows.

Let $a \in A$.

Since f is surjective, $f^{-1}(\{a\})$ is nonempty.

Choose $x \in f^{-1}(\{a\})$ and put g(a) = x.

We must do this for each $a \in A$.

Then, $f \circ g(a) = f(g(a)) = f(x) = a$.

Thus $f \circ g = I_A$ and g is a right inverse of f.

INVERSES AND PERMUTATIONS

THEOREM

Let $f: A \rightarrow A$. Then f is invertible if and only if f is a permutation on A.

Proof.

 (\Rightarrow) Suppose first that f is invertible.

Then f has an inverse g.

Since g is a left and right inverse, it follows form the lemmas that f is bijective and therefore is a permutation on A.

 (\Leftarrow) Now suppose that f is a permutation.

Since f is injective, it has a left inverse g.

Since f is surjective, it has a right inverse h.

So, we have $g = g \circ I_A = g \circ (f \circ h) = (g \circ f) \circ h = I_A \circ h = h$.

Thus f is invertible.

Note

- **1** Composition of functions is an associative binary operation on $\mathcal{M}(A)$ with identity element I_A .
- **2** $f \in \mathcal{M}(A)$ is invertible under composition of functions if and only if $f \in \mathcal{S}(A)$.
- **3** We will denote the inverse of $f \in \mathcal{S}(A)$ by f^{-1} .
- **4** S(A) is closed under composition of functions.
- **5** That is, if $f, g \in \mathcal{S}(A)$, then $f \circ g \in \mathcal{S}(A)$.
- **1** Thus, composition of functions is an associative binary operation of S(A) with identity element I_A .
- 7 If $f \in \mathcal{S}(A)$ then $f^{-1} \in \mathcal{S}(A)$ also.

