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ATRICES

DEFINITION

@ Let S be a set. An m x n matrix over S will be an array

aii a2 ... ai,n
a1 a2 ... a2.n
dm,1 dm2 --- dmpn

with m rows and n columns and elements a; ; € S.
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MATRICES

DEFINITION

@ Let S be a set. An m x n matrix over S will be an array

a1 412 ... din
a1 a2 ... a2.n
dm,1 dm2 --- dmpn

with m rows and n columns and elements a; ; € S.

® Two matrices A and B over S are equal if they have the same
dimensions and if a;; = b;j for 1 < /i< mand 1</ <n.
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MATRICES

DEFINITION

@ Let S be a set. An m x n matrix over S will be an array

a1 412 ... din
a1 a2 ... a2.n
dm,1 dm2 --- dmpn

with m rows and n columns and elements a; ; € S.

® Two matrices A and B over S are equal if they have the same
dimensions and if a;; = b;j for 1 < /i< mand 1</ <n.

® We denote the set of m x n matrices over S by Mp,»n(S).
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MATRICES

DEFINITION

@ Let S be a set. An m x n matrix over S will be an array

a1 412 ... din
a1 a2 ... a2.n
dm,1 dm2 --- dmpn

with m rows and n columns and elements a; ; € S.

® Two matrices A and B over S are equal if they have the same
dimensions and if a;; = b;j for 1 < /i< mand 1</ <n.
® We denote the set of m x n matrices over S by Mp,»n(S).

® We denote the set of n X n (square) matrices over S by
M, (S).

4
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ADDITION OF MATRICES IN M(R)

Suppose that A, B € Mpxn(R). Then we define their sum to be
the m x n matrix C with

Cij = ajj+ bij
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ADDITION OF MATRICES IN M(R)

Suppose that A, B € My,xn(R). Then we define their sum to be
the m x n matrix C with

Cij = ajj+ bij

THEOREM (PROPERTIES OF ADDITION ON My, (R))

© Addition is a binary operation on M,y ,(R).

v
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ADDITION OF MATRICES IN M(R)

Suppose that A, B € My,xn(R). Then we define their sum to be
the m x n matrix C with

C,"J':a;,j—Fb,"j

THEOREM (PROPERTIES OF ADDITION ON My, (R))

© Addition is a binary operation on M,y ,(R).
® Addition is associative on My, xn(R).
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ADDITION OF MATRICES IN M(R)

Suppose that A, B € My,xn(R). Then we define their sum to be
the m x n matrix C with

C,"J':a;,j—Fb,"j

THEOREM (PROPERTIES OF ADDITION ON My, (R))

© Addition is a binary operation on M,y ,(R).
® Addition is associative on My, xn(R).

® My xn(R) contains an identity element with respect to
addition, namely the matrix with all zero entries.
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ADDITION OF MATRICES IN M(R)

Suppose that A, B € My,xn(R). Then we define their sum to be
the m x n matrix C with

C,"J':a;,j—Fb,"j

THEOREM (PROPERTIES OF ADDITION ON My, (R))

© Addition is a binary operation on M,y ,(R).
® Addition is associative on My, xn(R).

® My xn(R) contains an identity element with respect to
addition, namely the matrix with all zero entries.

@ Each element of My n(R) has an additive inverse in
Mpxn(R).
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ADDITION OF MATRICES IN M(R)

Suppose that A, B € My,xn(R). Then we define their sum to be
the m x n matrix C with

C,"J':a;,j—Fb,"j

THEOREM (PROPERTIES OF ADDITION ON My, (R))

© Addition is a binary operation on M,y ,(R).
® Addition is associative on My, xn(R).

® My xn(R) contains an identity element with respect to
addition, namely the matrix with all zero entries.

@ Each element of My n(R) has an additive inverse in
Mpxn(R).

@ Addition is commutative in Mpxn(R).

v
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MATRIX MULTIPLICATION FOR MATRICES OVER R

Suppose that A € Mpxp(R) and B € My p(R). Then we define
the product AB to be the m x p matrix C = AB with

n
Gij =Y aikbj.
k=1
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NOTE

Matrix multiplication encodes composition of functions.
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NOTE

Matrix multiplication encodes composition of functions.
Let A€ Mpyxn(R) and B € M,xp(R).
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NOTE

Matrix multiplication encodes composition of functions.
Let A€ Mpyxn(R) and B € M,xp(R).
Define functions f : R” — R™ and g : R? — R" by

f(V)=Av and g(w)= Bw.
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NOTE

Matrix multiplication encodes composition of functions.
Let A€ Mpyxn(R) and B € M,xp(R).
Define functions f : R” — R™ and g : R? — R" by

f(V)=Av and g(w)= Bw.

Then f o g : RP — R™ is a linear map with matrix C = AB
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NOTE

Matrix multiplication encodes composition of functions.
Let A€ Mpyxn(R) and B € M,xp(R).
Define functions f : R” — R™ and g : R? — R" by

f(V)=Av and g(w)= Bw.

Then f o g : RP — R™ is a linear map with matrix C = AB
That is,
fog(v)=CvV where C = AB.
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NOTE

Matrix multiplication encodes composition of functions.
Let A€ Mpyxn(R) and B € M,xp(R).
Define functions f : R” — R™ and g : R? — R" by

f(V)=Av and g(w)= Bw.

Then f o g : RP — R™ is a linear map with matrix C = AB
That is,
fog(v)=CvV where C = AB.

Or put another way, matrix multiplication is defined so that

A(BV) = (AB)v.
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PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)
Suppose that A € Mpmyxn(R) and B € M,y (R).
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PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)
Suppose that A € Mpmyxn(R) and B € M,y (R).
@ The product AB is defined only when n = p.
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PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)
Suppose that A € Mpmyxn(R) and B € M,y (R).
@ The product AB is defined only when n = p.

® If n = p then AB is an m X r matrix.
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PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)
Suppose that A € Mpmyxn(R) and B € M,y (R).
@ The product AB is defined only when n = p.

® If n = p then AB is an m X r matrix.

® The product BA is defined only when m = r.
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PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)
Suppose that A € Mpmyxn(R) and B € M,y (R).
@ The product AB is defined only when n = p.

® If n = p then AB is an m X r matrix.
® The product BA is defined only when m = r.
@ If m=r then BA is a p X n matrix.
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PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)
Suppose that A € Mpmyxn(R) and B € M,y (R).
@ The product AB is defined only when n = p.

® If n = p then AB is an m X r matrix.

® The product BA is defined only when m = r.

@ If m=r then BA is a p X n matrix.

® So, AB and BA are both defined only when m = r and n = p.
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PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)
Suppose that A € Mpmyxn(R) and B € M,y (R).
@ The product AB is defined only when n = p.

® If n = p then AB is an m X r matrix.

® The product BA is defined only when m = r.

@ If m=r then BAis a p X n matrix.

® So, AB and BA are both defined only when m = r and n = p.
® If m=rand n=pthen ABis m x mand BAis n x n.
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PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)
Suppose that A € Mpmyxn(R) and B € M,y (R).
@ The product AB is defined only when n = p.

® If n = p then AB is an m X r matrix.

® The product BA is defined only when m = r.

@ If m=r then BAis a p X n matrix.

® So, AB and BA are both defined only when m = r and n = p.
® If m=rand n=pthen ABis m x mand BAis n x n.

@ So, AB and BA are both defined and have the same
dimensions only if m=n=p=r.
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PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)
Suppose that A € Mpmyxn(R) and B € M,y (R).
@ The product AB is defined only when n = p.

® If n = p then AB is an m X r matrix.

® The product BA is defined only when m = r.

@ If m=r then BAis a p X n matrix.

® So, AB and BA are both defined only when m = r and n = p.

® If m=rand n=pthen ABis m x mand BAis n x n.

@ So, AB and BA are both defined and have the same
dimensions only if m=n=p=r.

® Even when m = n= p = r, it still may be the case that
AB # BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 — Matrices



Matrix multiplication is associative. That is if A € Mpxn(R),
B € Mpyp(R) and C € Mpy,(R), then (AB)C = A(BC).

Kevin James MTHSC 412 Section 1.6 — Matrices



THEOREM

Matrix multiplication is associative. That is if A € Mpxn(R),
B € Mpyp(R) and C € Mpy,(R), then (AB)C = A(BC).

NoOTE

This follows from our recognition of matrix multiplication as
composition of functions and our proof that compositions of
functions is associative.

| A\

A
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.

v,
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.

Thus A(BC) and (AB)C both have the same dimensions.
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PROOF

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.

Thus A(BC) and (AB)C both have the same dimensions.
Also, for 1 <i<mand 1< <r, we have

[ (BC ]I,j Zal k[BC]k’J

k=1
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PROOF

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.
Thus A(BC) and (AB)C both have the same dimensions.
Also, for 1 <i<mand 1< <r, we have

[ BC ],J Za'k[BC]kJ_Za’kZkaCS’J
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.

Thus A(BC) and (AB)C both have the same dimensions.
Also, for 1 <i<mand 1< <r, we have
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.

Thus A(BC) and (AB)C both have the same dimensions.
Also, for 1 <i<mand 1< <r, we have

n n P
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s=1 k=1 s=1 k=1
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.
Thus A(BC) and (AB)C both have the same dimensions.
Also, for 1 <i<mand 1< <r, we have

n n P
[A(BC)];J = Z a,-7k[BC]k’j == Z i k Z bk,scs,j
k=1 k=1 s=1

P n
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.
Thus A(BC) and (AB)C both have the same dimensions.
Also, for 1 <i<mand 1< <r, we have

n n p
[A(BC)],'J = Z a,-7k[BC]k’J- = Z i k Z bk,scs,j
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.
Thus A(BC) and (AB)C both have the same dimensions.
Also, for 1 <i<mand 1< <r, we have

n n p
[A(BC)],'J = Z a,-7k[BC]k’J- = Z i k Z bk,scs,j
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.
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PROOF.

First we note that AB is m x p and thus (AB)C is m x r.
Also, BC is n x r and thus A(BC) is m x r.
Thus A(BC) and (AB)C both have the same dimensions.
Also, for 1 <i<mand 1< <r, we have

n n p
[A(BC)],'J = Z a,-7k[BC]k’J- = Z i k Z bk,scs,j
k=1
p n

P n
= Zzai’k(bk’scsj ZZ ai, kbks Cs,j

s=1 k=1 s=1 k=1

n P
= chdza’kbks —ZCS,J[AB]IS

- Z[AB]i,sCs,j = [(AB)Cl,

s=1

Thus A(BC) = (AB)C. O




DISTRIBUTIVE LAWS

Let A€ Mpyxn(R), B,C € Mpxp(R) and D € Mpy,(R). Then,
O AB+C)=AB+ AC.
® (B+ C)D=BC+ CD.
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A SPECIAL MATRIX AND ITS PROPERTIES

Define I, € Mn(R) by

] = {1 if i =,

0 otherwise.

Kevin James MTHSC 412 Section 1.6 — Matrices



A SPECIAL MATRIX AND ITS PROPERTIES

Define I, € Mn(R) by

] = {1 if i =,

0 otherwise.

Suppose that A € Mp,»n(R). Then,
o /A=A

o Al,=A.
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LEFT AND RIGHT INVERSES

DEFINITION

Let x be a binary operation on a nonempty set A.

@ If e € A satisfies e x a = a for all a € A, then e is said to be a
left identity for A with respect to *.
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LEFT AND RIGHT INVERSES

DEFINITION

Let x be a binary operation on a nonempty set A.
@ If e € A satisfies e x a = a for all a € A, then e is said to be a
left identity for A with respect to *.

® If e € A satisfies a*x e = a for all a € A, then e is said to be a
right identity for A with respect to .
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LEFT AND RIGHT INVERSES

DEFINITION

Let x be a binary operation on a nonempty set A.
@ If e € A satisfies e x a = a for all a € A, then e is said to be a
left identity for A with respect to *.

® If e € A satisfies a*x e = a for all a € A, then e is said to be a
right identity for A with respect to .

® Note that if e € A is both a left and right identity then it is
an identity.
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©® We call I, a left identity for Mp,»,(IR) with respect to matrix
multiplication, even though matrix multiplication is not a
binary operation on Mp,»,(R) unless m = n.
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NOTE

©® We call I, a left identity for Mp,»,(IR) with respect to matrix
multiplication, even though matrix multiplication is not a
binary operation on Mp,»,(R) unless m = n.

® Similarly we call I, a right identity for Mp,x,(R) with respect
to matrix multiplication.
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NOTE

©® We call I, a left identity for Mp,»,(IR) with respect to matrix
multiplication, even though matrix multiplication is not a
binary operation on Mp,»,(R) unless m = n.

® Similarly we call I, a right identity for Mp,x,(R) with respect
to matrix multiplication.

® I, is an identity for M,(R) with respect to matrix
multiplication.
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SQUARE MATRICES

THEOREM

©® Addition is an associative binary operation on M,(R).

@® The zero matrix is an identity for M,(R) w. r. t. addition .

® Each matrix A € M,(R) has an inverse w. r. t. addition ,
namely —A.

® Addition is commutative.
@ Multiplication is an associative binary operation on M,(R).
® In is an identity for M,(R) w. r. t. matrix multiplication.

@ A € My(R) has an inverse w. r. t. matrix multiplication if
and only if det(A) # 0 (from linear algebra).

® For A, B, C € M,(R), we have A(B+ C) = AB + AC and
(A+B)C =AC +BC.
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