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Matrices

Definition

1 Let S be a set. An m × n matrix over S will be an array

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
...

am,1 am,2 . . . am,n


with m rows and n columns and elements ai ,j ∈ S .

2 Two matrices A and B over S are equal if they have the same
dimensions and if ai ,j = bi ,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

3 We denote the set of m × n matrices over S by Mm×n(S).

4 We denote the set of n × n (square) matrices over S by
Mn(S).
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Addition of Matrices in M(R)

Definition

Suppose that A, B ∈ Mm×n(R). Then we define their sum to be
the m × n matrix C with

ci ,j = ai ,j + bi ,j

Theorem (Properties of Addition on Mm×n(R))

1 Addition is a binary operation on Mm×n(R).

2 Addition is associative on Mm×n(R).

3 Mm×n(R) contains an identity element with respect to
addition, namely the matrix with all zero entries.

4 Each element of Mm×n(R) has an additive inverse in
Mm×n(R).

5 Addition is commutative in Mm×n(R).
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Matrix Multiplication for Matrices over R

Definition

Suppose that A ∈ Mm×n(R) and B ∈ Mn×p(R). Then we define
the product AB to be the m × p matrix C = AB with

ci ,j =
n∑

k=1

ai ,kbk,j .
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Note

Matrix multiplication encodes composition of functions.

Let A ∈ Mm×n(R) and B ∈ Mn×p(R).
Define functions f : Rn → Rm and g : Rp → Rn by

f (~v) = A~v and g(~w) = B ~w .

Then f ◦ g : Rp → Rm is a linear map with matrix C = AB
That is,

f ◦ g(~v) = C~v where C = AB.

Or put another way, matrix multiplication is defined so that

A(B~v) = (AB)~v .
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Properties of Matrix Multiplication

Note (Matrix Multiplication is not Commutative)

Suppose that A ∈ Mm×n(R) and B ∈ Mp×r (R).

1 The product AB is defined only when n = p.

2 If n = p then AB is an m × r matrix.

3 The product BA is defined only when m = r .

4 If m = r then BA is a p × n matrix.

5 So, AB and BA are both defined only when m = r and n = p.

6 If m = r and n = p then AB is m ×m and BA is n × n.

7 So, AB and BA are both defined and have the same
dimensions only if m = n = p = r .

8 Even when m = n = p = r , it still may be the case that
AB 6= BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 – Matrices



Properties of Matrix Multiplication

Note (Matrix Multiplication is not Commutative)

Suppose that A ∈ Mm×n(R) and B ∈ Mp×r (R).

1 The product AB is defined only when n = p.

2 If n = p then AB is an m × r matrix.

3 The product BA is defined only when m = r .

4 If m = r then BA is a p × n matrix.

5 So, AB and BA are both defined only when m = r and n = p.

6 If m = r and n = p then AB is m ×m and BA is n × n.

7 So, AB and BA are both defined and have the same
dimensions only if m = n = p = r .

8 Even when m = n = p = r , it still may be the case that
AB 6= BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 – Matrices



Properties of Matrix Multiplication

Note (Matrix Multiplication is not Commutative)

Suppose that A ∈ Mm×n(R) and B ∈ Mp×r (R).

1 The product AB is defined only when n = p.

2 If n = p then AB is an m × r matrix.

3 The product BA is defined only when m = r .

4 If m = r then BA is a p × n matrix.

5 So, AB and BA are both defined only when m = r and n = p.

6 If m = r and n = p then AB is m ×m and BA is n × n.

7 So, AB and BA are both defined and have the same
dimensions only if m = n = p = r .

8 Even when m = n = p = r , it still may be the case that
AB 6= BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 – Matrices



Properties of Matrix Multiplication

Note (Matrix Multiplication is not Commutative)

Suppose that A ∈ Mm×n(R) and B ∈ Mp×r (R).

1 The product AB is defined only when n = p.

2 If n = p then AB is an m × r matrix.

3 The product BA is defined only when m = r .

4 If m = r then BA is a p × n matrix.

5 So, AB and BA are both defined only when m = r and n = p.

6 If m = r and n = p then AB is m ×m and BA is n × n.

7 So, AB and BA are both defined and have the same
dimensions only if m = n = p = r .

8 Even when m = n = p = r , it still may be the case that
AB 6= BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 – Matrices



Properties of Matrix Multiplication

Note (Matrix Multiplication is not Commutative)

Suppose that A ∈ Mm×n(R) and B ∈ Mp×r (R).

1 The product AB is defined only when n = p.

2 If n = p then AB is an m × r matrix.

3 The product BA is defined only when m = r .

4 If m = r then BA is a p × n matrix.

5 So, AB and BA are both defined only when m = r and n = p.

6 If m = r and n = p then AB is m ×m and BA is n × n.

7 So, AB and BA are both defined and have the same
dimensions only if m = n = p = r .

8 Even when m = n = p = r , it still may be the case that
AB 6= BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 – Matrices



Properties of Matrix Multiplication

Note (Matrix Multiplication is not Commutative)

Suppose that A ∈ Mm×n(R) and B ∈ Mp×r (R).

1 The product AB is defined only when n = p.

2 If n = p then AB is an m × r matrix.

3 The product BA is defined only when m = r .

4 If m = r then BA is a p × n matrix.

5 So, AB and BA are both defined only when m = r and n = p.

6 If m = r and n = p then AB is m ×m and BA is n × n.

7 So, AB and BA are both defined and have the same
dimensions only if m = n = p = r .

8 Even when m = n = p = r , it still may be the case that
AB 6= BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 – Matrices



Properties of Matrix Multiplication

Note (Matrix Multiplication is not Commutative)

Suppose that A ∈ Mm×n(R) and B ∈ Mp×r (R).

1 The product AB is defined only when n = p.

2 If n = p then AB is an m × r matrix.

3 The product BA is defined only when m = r .

4 If m = r then BA is a p × n matrix.

5 So, AB and BA are both defined only when m = r and n = p.

6 If m = r and n = p then AB is m ×m and BA is n × n.

7 So, AB and BA are both defined and have the same
dimensions only if m = n = p = r .

8 Even when m = n = p = r , it still may be the case that
AB 6= BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 – Matrices



Properties of Matrix Multiplication

Note (Matrix Multiplication is not Commutative)

Suppose that A ∈ Mm×n(R) and B ∈ Mp×r (R).

1 The product AB is defined only when n = p.

2 If n = p then AB is an m × r matrix.

3 The product BA is defined only when m = r .

4 If m = r then BA is a p × n matrix.

5 So, AB and BA are both defined only when m = r and n = p.

6 If m = r and n = p then AB is m ×m and BA is n × n.

7 So, AB and BA are both defined and have the same
dimensions only if m = n = p = r .

8 Even when m = n = p = r , it still may be the case that
AB 6= BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 – Matrices



Properties of Matrix Multiplication

Note (Matrix Multiplication is not Commutative)

Suppose that A ∈ Mm×n(R) and B ∈ Mp×r (R).

1 The product AB is defined only when n = p.

2 If n = p then AB is an m × r matrix.

3 The product BA is defined only when m = r .

4 If m = r then BA is a p × n matrix.

5 So, AB and BA are both defined only when m = r and n = p.

6 If m = r and n = p then AB is m ×m and BA is n × n.

7 So, AB and BA are both defined and have the same
dimensions only if m = n = p = r .

8 Even when m = n = p = r , it still may be the case that
AB 6= BA. In fact this is the usual case.

Kevin James MTHSC 412 Section 1.6 – Matrices



Theorem

Matrix multiplication is associative. That is if A ∈ Mm×n(R),
B ∈ Mn×p(R) and C ∈ Mp×r (R), then (AB)C = A(BC ).

Note

This follows from our recognition of matrix multiplication as
composition of functions and our proof that compositions of
functions is associative.
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Proof.

First we note that AB is m × p and thus (AB)C is m × r .

Also, BC is n × r and thus A(BC ) is m × r .
Thus A(BC ) and (AB)C both have the same dimensions.
Also, for 1 ≤ i ≤ m and 1 ≤ j ≤ r , we have

[A(BC )]i ,j =
n∑

k=1

ai ,k [BC ]k,j =
n∑

k=1

ai ,k

p∑
s=1

bk,scs,j

=

p∑
s=1

n∑
k=1

ai ,k(bk,scs,j) =

p∑
s=1

n∑
k=1

(ai ,kbk,s)cs,j

=

p∑
s=1

cs,j

n∑
k=1

ai ,kbk,s =

p∑
s=1

cs,j [AB]i ,s

=

p∑
s=1

[AB]i ,scs,j = [(AB)C ]i ,j

Thus A(BC ) = (AB)C .
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Distributive Laws

Theorem

Let A ∈ Mm×n(R), B, C ∈ Mn×p(R) and D ∈ Mp×r (R). Then,

1 A(B + C ) = AB + AC.

2 (B + C )D = BC + CD.
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A special matrix and its properties

Definition

Define In ∈ Mn(R) by

[In]i ,j =

{
1 if i = j ,

0 otherwise.

Theorem

Suppose that A ∈ Mm×n(R). Then,

1 ImA = A.

2 AIn = A.
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Left and Right Inverses

Definition

Let ∗ be a binary operation on a nonempty set A.

1 If e ∈ A satisfies e ∗ a = a for all a ∈ A, then e is said to be a
left identity for A with respect to ∗.

2 If e ∈ A satisfies a ∗ e = a for all a ∈ A, then e is said to be a
right identity for A with respect to ∗.

3 Note that if e ∈ A is both a left and right identity then it is
an identity.
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Note

1 We call Im a left identity for Mm×n(R) with respect to matrix
multiplication, even though matrix multiplication is not a
binary operation on Mm×n(R) unless m = n.

2 Similarly we call In a right identity for Mm×n(R) with respect
to matrix multiplication.

3 In is an identity for Mn(R) with respect to matrix
multiplication.
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Square Matrices

Theorem

1 Addition is an associative binary operation on Mn(R).

2 The zero matrix is an identity for Mn(R) w. r. t. addition .

3 Each matrix A ∈ Mn(R) has an inverse w. r. t. addition ,
namely −A.

4 Addition is commutative.

5 Multiplication is an associative binary operation on Mn(R).

6 In is an identity for Mn(R) w. r. t. matrix multiplication.

7 A ∈ Mn(R) has an inverse w. r. t. matrix multiplication if
and only if det(A) 6= 0 (from linear algebra).

8 For A, B, C ∈ Mn(R), we have A(B + C ) = AB + AC and
(A + B)C = AC + BC.
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