MTHSC 412 Section 1.6 – Matrices

Kevin James

DEFINITION

1 Let S be a set. An $m \times n$ matrix over S will be an array

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}$$

with m rows and n columns and elements $a_{i,j} \in S$.

- 2 Two matrices A and B over S are equal if they have the same dimensions and if $a_{i,j} = b_{i,j}$ for $1 \le i \le m$ and $1 \le j \le n$.
- **3** We denote the set of $m \times n$ matrices over S by $M_{m \times n}(S)$.
- ② We denote the set of $n \times n$ (square) matrices over S by $M_n(S)$.

Addition of Matrices in $M(\mathbb{R})$

DEFINITION

Suppose that $A, B \in M_{m \times n}(\mathbb{R})$. Then we define their sum to be the $m \times n$ matrix C with

$$c_{i,j} = a_{i,j} + b_{i,j}$$

Theorem (Properties of Addition on $M_{m \times n}(\mathbb{R})$)

- **1** Addition is a binary operation on $M_{m \times n}(\mathbb{R})$.
- **2** Addition is associative on $M_{m \times n}(\mathbb{R})$.
- **3** $M_{m \times n}(\mathbb{R})$ contains an identity element with respect to addition, namely the matrix with all zero entries.
- **1** Each element of $M_{m \times n}(\mathbb{R})$ has an additive inverse in $M_{m \times n}(\mathbb{R})$.
- **6** Addition is commutative in $M_{m \times n}(\mathbb{R})$.

Matrix Multiplication for Matrices over \mathbb{R}

DEFINITION

Suppose that $A \in M_{m \times n}(\mathbb{R})$ and $B \in M_{n \times p}(\mathbb{R})$. Then we define the product AB to be the $m \times p$ matrix C = AB with

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

Note

Matrix multiplication encodes composition of functions.

Let
$$A \in M_{m \times n}(\mathbb{R})$$
 and $B \in M_{n \times p}(\mathbb{R})$.

Define functions $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^p \to \mathbb{R}^n$ by

$$f(\vec{v}) = A\vec{v}$$
 and $g(\vec{w}) = B\vec{w}$.

Then $f \circ g : \mathbb{R}^p \to \mathbb{R}^m$ is a linear map with matrix C = AB. That is,

$$f \circ g(\vec{v}) = C\vec{v}$$
 where $C = AB$.

Or put another way, matrix multiplication is defined so that

$$A(B\vec{v})=(AB)\vec{v}.$$

PROPERTIES OF MATRIX MULTIPLICATION

NOTE (MATRIX MULTIPLICATION IS NOT COMMUTATIVE)

Suppose that $A \in M_{m \times n}(\mathbb{R})$ and $B \in M_{p \times r}(\mathbb{R})$.

- **1** The product AB is defined only when n = p.
- 2 If n = p then AB is an $m \times r$ matrix.
- **3** The product BA is defined only when m = r.
- **4** If m = r then BA is a $p \times n$ matrix.
- **6** So, AB and BA are both defined only when m = r and n = p.
- **6** If m = r and n = p then AB is $m \times m$ and BA is $n \times n$.
- **7** So, AB and BA are both defined and have the same dimensions only if m = n = p = r.
- § Even when m = n = p = r, it still may be the case that $AB \neq BA$. In fact this is the usual case.

THEOREM

Matrix multiplication is associative. That is if $A \in M_{m \times n}(\mathbb{R})$, $B \in M_{n \times p}(\mathbb{R})$ and $C \in M_{p \times r}(\mathbb{R})$, then (AB)C = A(BC).

Note

This follows from our recognition of matrix multiplication as composition of functions and our proof that compositions of functions is associative.

PROOF.

First we note that AB is $m \times p$ and thus (AB)C is $m \times r$.

Also, BC is $n \times r$ and thus A(BC) is $m \times r$.

Thus A(BC) and (AB)C both have the same dimensions.

Also, for $1 \le i \le m$ and $1 \le j \le r$, we have

$$[A(BC)]_{i,j} = \sum_{k=1}^{n} a_{i,k} [BC]_{k,j} = \sum_{k=1}^{n} a_{i,k} \sum_{s=1}^{p} b_{k,s} c_{s,j}$$

$$= \sum_{s=1}^{p} \sum_{k=1}^{n} a_{i,k} (b_{k,s} c_{s,j}) = \sum_{s=1}^{p} \sum_{k=1}^{n} (a_{i,k} b_{k,s}) c_{s,j}$$

$$= \sum_{s=1}^{p} c_{s,j} \sum_{k=1}^{n} a_{i,k} b_{k,s} = \sum_{s=1}^{p} c_{s,j} [AB]_{i,s}$$

$$= \sum_{s=1}^{p} [AB]_{i,s} c_{s,j} = [(AB)C]_{i,j}$$

Thus
$$A(BC) = (AB)C$$
.

DISTRIBUTIVE LAWS

THEOREM

Let $A \in M_{m \times n}(\mathbb{R})$, $B, C \in M_{n \times p}(\mathbb{R})$ and $D \in M_{p \times r}(\mathbb{R})$. Then,

- **1** A(B+C) = AB + AC.
- **2** (B+C)D = BC + CD.

A SPECIAL MATRIX AND ITS PROPERTIES

DEFINITION

Define $I_n \in M_n(\mathbb{R})$ by

$$[I_n]_{i,j} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

THEOREM

Suppose that $A \in M_{m \times n}(\mathbb{R})$. Then,

- $2 AI_n = A.$

LEFT AND RIGHT INVERSES

DEFINITION

Let * be a binary operation on a nonempty set A.

- 1 If $e \in A$ satisfies e * a = a for all $a \in A$, then e is said to be a *left identity* for A with respect to *.
- 2 If $e \in A$ satisfies a * e = a for all $a \in A$, then e is said to be a right identity for A with respect to *.
- **3** Note that if $e \in A$ is both a left and right identity then it is an identity.

Note

- ① We call I_m a left identity for $M_{m \times n}(\mathbb{R})$ with respect to matrix multiplication, even though matrix multiplication is not a binary operation on $M_{m \times n}(\mathbb{R})$ unless m=n.
- ② Similarly we call I_n a right identity for $M_{m \times n}(\mathbb{R})$ with respect to matrix multiplication.
- **3** I_n is an identity for $M_n(\mathbb{R})$ with respect to matrix multiplication.

SQUARE MATRICES

THEOREM

- **1** Addition is an associative binary operation on $M_n(\mathbb{R})$.
- 2 The zero matrix is an identity for $M_n(\mathbb{R})$ w. r. t. addition .
- **3** Each matrix $A \in M_n(\mathbb{R})$ has an inverse w. r. t. addition , namely -A.
- 4 Addition is commutative.
- **6** Multiplication is an associative binary operation on $M_n(\mathbb{R})$.
- **6** I_n is an identity for $M_n(\mathbb{R})$ w. r. t. matrix multiplication.
- **7** $A ∈ M_n(\mathbb{R})$ has an inverse w. r. t. matrix multiplication if and only if $det(A) \neq 0$ (from linear algebra).
- § For $A, B, C \in M_n(\mathbb{R})$, we have A(B+C) = AB + AC and (A+B)C = AC + BC.

