MTHSC 412 Section 1.7 – Relations

Kevin James

RELATIONS

DEFINITION

A relation on a set A is a subset of $A \times A$.

RELATIONS

Definition

A relation on a set A is a subset of $A \times A$.

NOTATION

If R is a relation on A and $(a,b) \in R$ then we say that a is related to b by R and write aRb. If $(a,b) \notin R$ then we write aRb.

RELATIONS

DEFINITION

A relation on a set A is a subset of $A \times A$.

NOTATION

If R is a relation on A and $(a,b) \in R$ then we say that a is related to b by R and write aRb. If $(a,b) \notin R$ then we write aRb.

EXAMPLE

Suppose that $A = \{a, b, c\}$ and $R = \{(a, b), (b, c), (c, a)\}$. Then we have aRb and aRc.

DEFINITION

A relation on a set A is a subset of $A \times A$.

NOTATION

If R is a relation on A and $(a,b) \in R$ then we say that a is related to b by R and write aRb. If $(a,b) \notin R$ then we write aRb.

EXAMPLE

Suppose that $A = \{a, b, c\}$ and $R = \{(a, b), (b, c), (c, a)\}$. Then we have aRb and aRc.

EXAMPLE

Some well known relations on the integers are $<,>,\leq,\geq$ and =. Also, we have seen the \subseteq relation on sets whose elements are sets.

Equivalence Relations

DEFINITION

A relation R on a nonempty set A is an equivalence relation if the following conditions hold for $x, y, z \in A$.

- 1 xRx for all $x \in A$. (Reflexive Property)
- 2 If xRy then yRx also. (Symmetric Property)
- 3 If xRy and yRz then xRz also. (Transitive Property)

AN IMPORTANT EXAMPLE

DEFINITION

We will consider the relation on \mathbb{Z} defined as the set $\{(x,y)\in\mathbb{Z}^2\mid (x-y) \text{ is divisible by 4}\}$. If (a,b) is in this set, we write $a\equiv b\pmod{4}$.

AN IMPORTANT EXAMPLE

DEFINITION

We will consider the relation on \mathbb{Z} defined as the set $\{(x,y)\in\mathbb{Z}^2\mid (x-y) \text{ is divisible by 4}\}$. If (a,b) is in this set, we write $a\equiv b\pmod{4}$.

FACT

 $\equiv \pmod{4}$ is an equivalence relation on \mathbb{Z} .

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible by 4. So, $\equiv \pmod{4}$ is reflexive.

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z}$

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z} \Rightarrow y - x = -4k = 4(-k)$.

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z} \Rightarrow y - x = -4k = 4(-k)$.

So, $y \equiv x \pmod{4}$ as well and $\equiv \pmod{4}$ is symmetric.

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z} \Rightarrow y - x = -4k = 4(-k)$.

So, $y \equiv x \pmod{4}$ as well and $\equiv \pmod{4}$ is symmetric.

Transitive: Suppose that $x, y, z \in \mathbb{Z}$ with $x \equiv y \pmod{4}$ and

 $y \equiv z \pmod{4}$.

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z} \Rightarrow y - x = -4k = 4(-k)$.

So, $y \equiv x \pmod{4}$ as well and $\equiv \pmod{4}$ is symmetric.

Transitive: Suppose that $x, y, z \in \mathbb{Z}$ with $x \equiv y \pmod{4}$ and

 $y \equiv z \pmod{4}$.

Then we have x - y = 4k and y - z = 4m form some $k, m \in \mathbb{Z}$.

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z} \Rightarrow y - x = -4k = 4(-k)$.

So, $y \equiv x \pmod{4}$ as well and $\equiv \pmod{4}$ is symmetric.

Transitive: Suppose that $x, y, z \in \mathbb{Z}$ with $x \equiv y \pmod{4}$ and $y \equiv z \pmod{4}$.

Then we have x - y = 4k and y - z = 4m form some $k, m \in \mathbb{Z}$.

So, x - z =

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z} \Rightarrow y - x = -4k = 4(-k)$.

So, $y \equiv x \pmod{4}$ as well and $\equiv \pmod{4}$ is symmetric.

Transitive: Suppose that $x, y, z \in \mathbb{Z}$ with $x \equiv y \pmod{4}$ and $y \equiv z \pmod{4}$.

Then we have x - y = 4k and y - z = 4m form some $k, m \in \mathbb{Z}$.

So, x - z = (x - y) + (y - z) =

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z} \Rightarrow y - x = -4k = 4(-k)$.

So, $y \equiv x \pmod{4}$ as well and $\equiv \pmod{4}$ is symmetric.

Transitive: Suppose that $x, y, z \in \mathbb{Z}$ with $x \equiv y \pmod{4}$ and $y \equiv z \pmod{4}$.

Then we have x - y = 4k and y - z = 4m form some $k, m \in \mathbb{Z}$.

So, x - z = (x - y) + (y - z) = 4k + 4m = 4(k + m).

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z} \Rightarrow y - x = -4k = 4(-k)$.

So, $y \equiv x \pmod{4}$ as well and $\equiv \pmod{4}$ is symmetric.

Transitive: Suppose that $x, y, z \in \mathbb{Z}$ with $x \equiv y \pmod{4}$ and $y \equiv z \pmod{4}$.

Then we have x - y = 4k and y - z = 4m form some $k, m \in \mathbb{Z}$.

So, x - z = (x - y) + (y - z) = 4k + 4m = 4(k + m).

Thus $x \equiv z \pmod{4}$ as well and $\equiv \pmod{4}$ is transitive.

Reflexive: Suppose that $x \in \mathbb{Z}$. Then x - x = 0 which is divisible

by 4. So, $\equiv \pmod{4}$ is reflexive.

Symmetric: Suppose that $x, y \in \mathbb{Z}$ and that $x \equiv y \pmod{4}$.

Then (x - y) = 4k for some $k \in \mathbb{Z} \Rightarrow y - x = -4k = 4(-k)$.

So, $y \equiv x \pmod{4}$ as well and $\equiv \pmod{4}$ is symmetric.

Transitive: Suppose that $x, y, z \in \mathbb{Z}$ with $x \equiv y \pmod{4}$ and $y \equiv z \pmod{4}$.

Then we have x - y = 4k and y - z = 4m form some $k, m \in \mathbb{Z}$.

So, x - z = (x - y) + (y - z) = 4k + 4m = 4(k + m).

Thus $x \equiv z \pmod{4}$ as well and $\equiv \pmod{4}$ is transitive.

Since $\equiv\pmod{4}$ is reflexive, symmetric and transitive, it is an equivalence relation.

EQUIVALENCE CLASSES

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] =$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{\dots, -8, -4, 0, 4, 8, 12, \dots\}$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] \ = \ \{\ldots, -8, -4, 0, 4, 8, 12, \ldots\}$$

$$[1] =$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{\dots, -8, -4, 0, 4, 8, 12, \dots\}$$

$$[1] = \{\ldots, -7, -3, 1, 5, 9, 13, \ldots\}$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{\ldots, -8, -4, 0, 4, 8, 12, \ldots\}$$

$$[1] \ = \ \{\ldots, -7, -3, 1, 5, 9, 13, \ldots\}$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{\ldots, -8, -4, 0, 4, 8, 12, \ldots\}$$

$$[1] = \{\ldots, -7, -3, 1, 5, 9, 13, \ldots\}$$

$$[2] = \{\ldots, -6, -2, 2, 6, 10, 14, \ldots\}$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{\ldots, -8, -4, 0, 4, 8, 12, \ldots\}$$

$$[1] = \{\ldots, -7, -3, 1, 5, 9, 13, \ldots\}$$

$$[2] = \{\ldots, -6, -2, 2, 6, 10, 14, \ldots\}$$

$$[3] =$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{\ldots, -8, -4, 0, 4, 8, 12, \ldots\}$$

$$[1] = \{\ldots, -7, -3, 1, 5, 9, 13, \ldots\}$$

$$[2] = \{\ldots, -6, -2, 2, 6, 10, 14, \ldots\}$$

$$[3] = \{\ldots, -5, -1, 3, 7, 11, 15, \ldots\}$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{..., -8, -4, 0, 4, 8, 12, ...\}$$

$$[1] = \{\ldots, -7, -3, 1, 5, 9, 13, \ldots\}$$

$$[2] = \{\ldots, -6, -2, 2, 6, 10, 14, \ldots\}$$

$$[3] = \{\ldots, -5, -1, 3, 7, 11, 15, \ldots\}$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{\dots, -8, -4, 0, 4, 8, 12, \dots\}$$

$$[1] = \{\dots, -7, -3, 1, 5, 9, 13, \dots\}$$

$$[2] = \{\dots, -6, -2, 2, 6, 10, 14, \dots\}$$

$$[3] = \{\dots, -5, -1, 3, 7, 11, 15, \dots\}$$

$$[4] = [0],$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{\ldots, -8, -4, 0, 4, 8, 12, \ldots\}$$

$$[1] = \{\ldots, -7, -3, 1, 5, 9, 13, \ldots\}$$

$$[2] = \{\ldots, -6, -2, 2, 6, 10, 14, \ldots\}$$

$$[3] = \{\ldots, -5, -1, 3, 7, 11, 15, \ldots\}$$

$$[4] = [0], [5] =$$

DEFINITION

Let R be an equivalence relation of a nonempty set A. For each $a \in A$ we define the *equivalence class* containing a as

$$[a] = \{x \in A \mid xRa\}.$$

EXAMPLE

$$[0] = \{\dots, -8, -4, 0, 4, 8, 12, \dots\}$$

$$[1] = \{\dots, -7, -3, 1, 5, 9, 13, \dots\}$$

$$[2] = \{\dots, -6, -2, 2, 6, 10, 14, \dots\}$$

$$[3] = \{\dots, -5, -1, 3, 7, 11, 15, \dots\}$$

$$[4] = [0], [5] = [1]$$

Equivalence Classes Form a Partition

Definition

Let $\{A_i\}_{i\in I}$ be a collection of subsets of a nonempty set A. We say that $\{A_i\}_{i\in I}$ is a *partition* of A if the following conditions are satisfied.

- **1** $A_i \neq \emptyset$ for all $i \in I$.
- $2 A = \cup_{i \in I} A_i.$
- **3** If $A_i \cap A_j \neq \emptyset$ then $A_i = A_j$.

Equivalence Classes Form a Partition

DEFINITION

Let $\{A_i\}_{i\in I}$ be a collection of subsets of a nonempty set A. We say that $\{A_i\}_{i\in I}$ is a *partition* of A if the following conditions are satisfied.

- **1** $A_i \neq \emptyset$ for all $i \in I$.
- $A = \cup_{i \in I} A_i.$
- **3** If $A_i \cap A_j \neq \emptyset$ then $A_i = A_j$.

FACT

- If R is an equivalence relation on a nonempty set A then $\{[a] \mid a \in A\}$ is a partition of A.
- If $P = \{A_i\}_{i \in I}$ is a partition of A then there is an equivalence relation R on A such that the equivalence classes of R are precisely the parts A_i of P. To see this just define R by aRb if and only if a and b are in the same part of P.