MTHSC 412 Section 2.2 – Mathematical Induction

Kevin James

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION

Suppose that P(n) is a statement about the integer n and that the following two conditions are satisfied.

- \bigcirc P(a) is true for some integer a.
- 2 If P(k) is true for some $k \ge a$ then P(k+1) is true.

Then P(n) is true for all integers $n \ge a$.

PROOF BY INDUCTION

To prove that a statement P(n) is true for all $n \geq a$, where $a \in \mathbb{Z}$.

1 Basis Step: Check that P(a) is true.

PROOF BY INDUCTION

To prove that a statement P(n) is true for all $n \geq a$, where $a \in \mathbb{Z}$.

- **1** Basis Step: Check that P(a) is true.
- **2 Induction Hypothesis:** Assume that P(k) is true for some k > a.

PROOF BY INDUCTION

To prove that a statement P(n) is true for all $n \geq a$, where $a \in \mathbb{Z}$.

- **1** Basis Step: Check that P(a) is true.
- **2 Induction Hypothesis:** Assume that P(k) is true for some k > a.
- **3 Induction Step:** Under the above assumption, prove that P(k+1) is true.

Proof by Induction

To prove that a statement P(n) is true for all $n \geq a$, where $a \in \mathbb{Z}$.

- **1** Basis Step: Check that P(a) is true.
- **2 Induction Hypothesis:** Assume that P(k) is true for some $k \ge a$.
- **3 Induction Step:** Under the above assumption, prove that P(k+1) is true.
- 4 Deduce that P(n) is true for all $n \ge a$ by induction.

EXAMPLE

FACT

For any $n \geq 1$, $\sum_{i=1}^{n} (2i - 1) =$

EXAMPLE

FACT

For any $n \ge 1$, $\sum_{i=1}^{n} (2i - 1) = n^2$.

Basis Step: When n = 1 we have $\sum_{i=1}^{1} (2i - 1) = 1 = 1^2$. So the statement is true when n = 1.

Basis Step: When n = 1 we have $\sum_{i=1}^{1} (2i - 1) = 1 = 1^2$. So the statement is true when n = 1.

Induction Hypothesis: Suppose that $\sum_{i=1}^{k} (2i-1) = k^2$ for some k > 1.

Basis Step: When n = 1 we have $\sum_{i=1}^{1} (2i - 1) = 1 = 1^2$. So the statement is true when n = 1.

Induction Hypothesis: Suppose that $\sum_{i=1}^{k} (2i-1) = k^2$ for some $k \ge 1$.

Induction Step: Then,

$$\sum_{i=1}^{k+1} (2i-1) =$$

Basis Step: When n = 1 we have $\sum_{i=1}^{1} (2i - 1) = 1 = 1^2$. So the statement is true when n = 1.

Induction Hypothesis: Suppose that $\sum_{i=1}^{k} (2i-1) = k^2$ for some $k \ge 1$.

Induction Step: Then,

$$\sum_{i=1}^{k+1} (2i-1) = \left(\sum_{i=1}^{k} (2i-1)\right) + 2(k+1) - 1$$

Basis Step: When n = 1 we have $\sum_{i=1}^{1} (2i - 1) = 1 = 1^2$. So the statement is true when n = 1.

Induction Hypothesis: Suppose that $\sum_{i=1}^{k} (2i-1) = k^2$ for some $k \ge 1$.

Induction Step: Then,

$$\sum_{i=1}^{k+1} (2i-1) = \left(\sum_{i=1}^{k} (2i-1)\right) + 2(k+1) - 1$$

$$= k^2 + 2k + 1, \text{ by our induction hypothesis.}$$

Basis Step: When n = 1 we have $\sum_{i=1}^{1} (2i - 1) = 1 = 1^2$. So the statement is true when n = 1.

Induction Hypothesis: Suppose that $\sum_{i=1}^{k} (2i - 1) = k^2$ for some $k \ge 1$.

Induction Step: Then,

$$\sum_{i=1}^{k+1} (2i-1) = \left(\sum_{i=1}^{k} (2i-1)\right) + 2(k+1) - 1$$

$$= k^2 + 2k + 1, \text{ by our induction hypothesis.}$$

$$= (k+1)^2.$$

Thus by induction we see that $\sum_{i=1}^{k} (2i-1) = k^2$ for all $k \ge 1$.

n	5n + 1	n ²

n	5n + 1	n ²
1	6	1

n	5n + 1	n ²
1 2	6	1 4
2	11	4

n	5n + 1	n ²
1	6	1
1 2 3	11	1 4 9
3	16	9

	г . 1	2
n	5n + 1	n²
1	6	1
2	11	4 9
2 3 4	16	9
4	21	16

	1	2
n	5n + 1	n²
1	6	1
2	11	4 9
2 3 4	16	9
	21	16
5	26	25

n	5n + 1	n ²
1	6	1
2	11	4
2 3 4	16	9
	21	16
5 6	26	25
6	31	36

n	5n + 1	n ²
1	6	1
2	11	4
3	16	9
4	21	16
5	26	25
6	31	36
7	36	49
8	41	64

n	5n + 1	n ²
1	6	1
2	11	4
3	16	9
4	21	16
5	26	25
6	31	36
7	36	49
8	41	64

Based on this data we might conjecture that

For $n \ge 6$, $n^2 > 5n + 1$.

For $n \ge 6$, $n^2 > 5n + 1$.

Proof.

Basis Step: From our table, we see that $n^2 > 5n + 1$ for n = 6, 7 and 8.

For $n \ge 6$, $n^2 > 5n + 1$.

Proof.

Basis Step: From our table, we see that $n^2 > 5n + 1$ for n = 6, 7 and 8.

Induction Hypothesis: Assume that $k^2 > 5k + 1$ for some $k \ge 6$.

For
$$n \ge 6$$
, $n^2 > 5n + 1$.

Proof.

Basis Step: From our table, we see that $n^2 > 5n + 1$ for n = 6, 7 and 8.

Induction Hypothesis: Assume that $k^2 > 5k + 1$ for some $k \ge 6$. **Induction Step:** For n = k + 1, we have

$$5(k+1)+1 = (5k+1)+5.$$

For
$$n \ge 6$$
, $n^2 > 5n + 1$.

Proof.

Basis Step: From our table, we see that $n^2 > 5n + 1$ for n = 6, 7 and 8.

Induction Hypothesis: Assume that $k^2 > 5k + 1$ for some $k \ge 6$. **Induction Step:** For n = k + 1, we have

$$5(k+1)+1 = (5k+1)+5.$$

 $< k^2+5$, by our induction hypothesis.

For
$$n \ge 6$$
, $n^2 > 5n + 1$.

Proof.

Basis Step: From our table, we see that $n^2 > 5n + 1$ for n = 6, 7 and 8.

Induction Hypothesis: Assume that $k^2 > 5k + 1$ for some $k \ge 6$. **Induction Step:** For n = k + 1, we have

$$5(k+1)+1 = (5k+1)+5.$$

 $< k^2+5$, by our induction hypothesis.
 $< k^2+2k+1$ since $k \ge 6$.

For
$$n \ge 6$$
, $n^2 > 5n + 1$.

Proof.

Basis Step: From our table, we see that $n^2 > 5n + 1$ for n = 6, 7 and 8.

Induction Hypothesis: Assume that $k^2 > 5k + 1$ for some $k \ge 6$. **Induction Step:** For n = k + 1, we have

$$5(k+1)+1 = (5k+1)+5.$$

$$< k^2+5, \text{ by our induction hypothesis.}$$

$$< k^2+2k+1 \text{ since } k \ge 6.$$

$$= (k+1)^2.$$

It follows by induction that $n^2 > 5n + 1$ for all n > 6.

STRONG OR COMPLETE INDUCTION

An proof technique which is equivalent to induction but more convenient to use in many cases is *strong induction*.

STRONG OR COMPLETE INDUCTION

An proof technique which is equivalent to induction but more convenient to use in many cases is *strong induction*.

Proof by Strong Induction

To prove that P(n) is true for all $n \ge a$:

- **1** Basis Step: Check that P(a) is true.
- **2 Induction Hypothesis:** Assume that P(n) is true for all $a \le n \le k$ for some $k \ge a$.
- **3 Induction Step:** Under the above assumption, prove that P(k+1) is true.
- **4** Deduce that P(n) is true for all $n \ge a$ by strong induction.

EXAMPLE

DEFINITION

An integer p is prime is p>1 and if the only integers which divide p evenly are ± 1 and $\pm p$.

EXAMPLE

DEFINITION

An integer p is prime is p>1 and if the only integers which divide p evenly are ± 1 and $\pm p$.

THEOREM

Every integer $n \ge 2$ has a prime divisor.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Case 1: If k + 1 is prime then k + 1 is a prime divisor of itself.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Case 1: If k + 1 is prime then k + 1 is a prime divisor of itself.

Case 2: If k + 1 is not prime then we can write

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Case 1: If k + 1 is prime then k + 1 is a prime divisor of itself.

Case 2: If k + 1 is not prime then we can write

$$k+1 = \ell m$$
, for some $1 < \ell \le m < k+1$.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Case 1: If k + 1 is prime then k + 1 is a prime divisor of itself.

Case 2: If k + 1 is not prime then we can write

$$k + 1 = \ell m$$
, for some $1 < \ell \le m < k + 1$.

Since $2 \le m \le k$, our induction hypothesis implies that m is divisible by some prime p.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Case 1: If k + 1 is prime then k + 1 is a prime divisor of itself.

Case 2: If k + 1 is not prime then we can write

$$k+1 = \ell m$$
, for some $1 < \ell \le m < k+1$.

Since $2 \le m \le k$, our induction hypothesis implies that m is divisible by some prime p.

That is m = pr for some $r \in \mathbb{Z}$.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Case 1: If k + 1 is prime then k + 1 is a prime divisor of itself.

Case 2: If k + 1 is not prime then we can write

$$k+1 = \ell m$$
, for some $1 < \ell \le m < k+1$.

Since $2 \le m \le k$, our induction hypothesis implies that m is divisible by some prime p.

That is m = pr for some $r \in \mathbb{Z}$.

So, we have $k+1=\ell m=\ell rp$, and p divides k+1.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Case 1: If k + 1 is prime then k + 1 is a prime divisor of itself.

Case 2: If k + 1 is not prime then we can write

$$k+1 = \ell m$$
, for some $1 < \ell \le m < k+1$.

Since $2 \le m \le k$, our induction hypothesis implies that m is divisible by some prime p.

That is m = pr for some $r \in \mathbb{Z}$.

So, we have $k+1=\ell m=\ell rp$, and p divides k+1.

Thus in either case, we have shown that k + 1 has a prime divisor

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some k > 2.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Case 1: If k + 1 is prime then k + 1 is a prime divisor of itself.

Case 2: If k + 1 is not prime then we can write

$$k + 1 = \ell m$$
, for some $1 < \ell \le m < k + 1$.

Since $2 \le m \le k$, our induction hypothesis implies that m is divisible by some prime p.

That is m = pr for some $r \in \mathbb{Z}$.

So, we have $k+1=\ell m=\ell rp$, and p divides k+1.

Thus in either case, we have shown that k+1 has a prime divisor and our theorem follows by strong induction.