MTHSC 412 Section 2.2 – Mathematical Induction

Kevin James

Kevin James MTHSC 412 Section 2.2 – Mathematical Induction

э

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION

Suppose that P(n) is a statement about the integer n and that the following two conditions are satisfied.

1 P(a) is true for some integer a.

2 If P(k) is true for some $k \ge a$ then P(k+1) is true.

Then P(n) is true for all integers $n \ge a$.

PROOF STRATEGY

PROOF BY INDUCTION

To prove that a statement P(n) is true for all $n \ge a$, where $a \in \mathbb{Z}$.

- **1** Basis Step: Check that P(a) is true.
- Induction Hypothesis: Assume that P(k) is true for some k ≥ a.
- **3** Induction Step: Under the above assumption, prove that P(k+1) is true.
- **4** Deduce that P(n) is true for all $n \ge a$ by induction.

向下 イヨト イヨト

Fact

For any
$$n \ge 1$$
, $\sum_{i=1}^{n} (2i - 1) = n^2$.

æ

Proof.

Basis Step: When n = 1 we have $\sum_{i=1}^{1} (2i - 1) = 1 = 1^2$. So the statement is true when n = 1. **Induction Hypothesis:** Suppose that $\sum_{i=1}^{k} (2i - 1) = k^2$ for some $k \ge 1$.

Induction Step: Then,

$$\sum_{i=1}^{k+1} (2i-1) = \left(\sum_{i=1}^{k} (2i-1) \right) + 2(k+1) - 1$$

= $k^2 + 2k + 1$, by our induction hypothesis.
= $(k+1)^2$.

Thus by induction we see that $\sum_{i=1}^{k} (2i-1) = k^2$ for all $k \ge 1$.

(D) (A) (A) (A) (A)

Consider the following data.

n	5n + 1	n^2
1	6	1
2	11	4
3	16	9
4	21	16
5	26	25
6	31	36
7	36	49
8	41	64

Based on this data we might conjecture that

(4月) (4日) (4日)

Fact

For
$$n \ge 6$$
, $n^2 > 5n + 1$.

Proof.

Basis Step: From our table, we see that $n^2 > 5n + 1$ for n = 6, 7 and 8.

Induction Hypothesis: Assume that $k^2 > 5k + 1$ for some $k \ge 6$. **Induction Step:** For n = k + 1, we have

$$5(k+1) + 1 = (5k+1) + 5.$$

< $k^2 + 5$, by our induction hypothesis.
< $k^2 + 2k + 1$ since $k \ge 6$.
= $(k+1)^2$.

It follows by induction that $n^2 > 5n + 1$ for all $n \ge 6$.

• • • • • • • • • • • • •

STRONG OR COMPLETE INDUCTION

An proof technique which is equivalent to induction but more convenient to use in many cases is *strong induction*.

PROOF BY STRONG INDUCTION

To prove that P(n) is true for all $n \ge a$:

- **1** Basis Step: Check that P(a) is true.
- Induction Hypothesis: Assume that P(n) is true for all a ≤ n ≤ k for some k ≥ a.
- **3** Induction Step: Under the above assumption, prove that P(k+1) is true.
- **4** Deduce that P(n) is true for all $n \ge a$ by strong induction.

(4月) (4日) (4日)

DEFINITION

An integer p is prime is p > 1 and if the only integers which divide p evenly are ± 1 and $\pm p$.

THEOREM

Every integer $n \ge 2$ has a prime divisor.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

Basis Step: 2 is prime and divides itself. So, the statement is true for n = 2.

Induction Hypothesis: Suppose that each $2 \le n \le k$ has a prime divisor for some $k \ge 2$.

Induction Step: Now let us consider n = k + 1.

We will consider two cases. Either k + 1 is prime or it is not.

Case 1: If k + 1 is prime then k + 1 is a prime divisor of itself.

Case 2: If k + 1 is not prime then we can write

$$k + 1 = \ell m$$
, for some $1 < \ell \le m < k + 1$.

Since $2 \le m \le k$, our induction hypothesis implies that *m* is divisible by some prime *p*.

That is m = pr for some $r \in \mathbb{Z}$.

So, we have $k + 1 = \ell m = \ell r p$, and p divides k + 1.

Thus in either case, we have shown that k + 1 has a prime divisor and our theorem follows by strong induction.