MTHSC 412 Section 2.3 – Divisibility

Kevin James

THEOREM (WELL-ORDERING PRINCIPLE)

Every nonempty set S of positive integers has a least element. That is, there is $m \in S$ such that $x \in S \Rightarrow m \le x$.

THEOREM (WELL-ORDERING PRINCIPLE)

Every nonempty set S of positive integers has a least element. That is, there is $m \in S$ such that $x \in S \Rightarrow m \le x$.

Note

The well ordering principle is equivalent to the principle of mathematical induction.

DIVISOR AND MULTIPLE

DEFINITION

Let $a, b \in \mathbb{Z}$. We say that a divides b or that b is a multiple of a is there is an integer c such that b = ac. In this case, we write a|b.

DIVISOR AND MULTIPLE

DEFINITION

Let $a, b \in \mathbb{Z}$. We say that a divides b or that b is a multiple of a is there is an integer c such that b = ac. In this case, we write a|b.

THEOREM

The divisors of 1 are ± 1 .

Suppose that $a,b\in\mathbb{Z}$ with b>0. Then there exist $q,r\in\mathbb{Z}$ such that

- **2** $0 \le r < b$.

Suppose that $a,b\in\mathbb{Z}$ with b>0. Then there exist $q,r\in\mathbb{Z}$ such that

- $\mathbf{0}$ a = bq + r, and
- **2** $0 \le r < b$.

EXAMPLE

1 Given a = 14 and b = 3, we can write

Suppose that $a,b\in\mathbb{Z}$ with b>0. Then there exist $q,r\in\mathbb{Z}$ such that

- $\mathbf{0}$ a = bq + r, and
- **2** $0 \le r < b$.

EXAMPLE

① Given a = 14 and b = 3, we can write 14 = 3 * 4 + 2. So, q = 4 and r = 2.

Suppose that $a, b \in \mathbb{Z}$ with b > 0. Then there exist $q, r \in \mathbb{Z}$ such that

- $\mathbf{0}$ a = bq + r, and
- **2** $0 \le r < b$.

EXAMPLE

- ① Given a = 14 and b = 3, we can write 14 = 3 * 4 + 2. So, q = 4 and r = 2.
- 2 Given a = -14 and b = 3, we can write

Suppose that $a, b \in \mathbb{Z}$ with b > 0. Then there exist $q, r \in \mathbb{Z}$ such that

- $\mathbf{0}$ a = bq + r, and
- **2** $0 \le r < b$.

EXAMPLE

- ① Given a = 14 and b = 3, we can write 14 = 3 * 4 + 2. So, q = 4 and r = 2.
- ② Given a = -14 and b = 3, we can write -14 = 3 * (-5) + 1. So, q = -5 and r = 1.

Let $a, b \in \mathbb{Z}$ with b > 0.

Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

$$a - bq = 0 \Rightarrow a = bq$$

Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

$$a - bq = 0 \Rightarrow a = bq$$

If $0 \notin S$ then S is a subset of the positive integers and thus has a smallest element.

Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}$.

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

 $a - bq = 0 \Rightarrow a = bq$

If $0 \notin S$ then S is a subset of the positive integers and thus has a smallest element.

Let r be the smallest element of S.

Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}$.

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

$$a - bq = 0 \Rightarrow a = bq$$

If $0 \notin S$ then S is a subset of the positive integers and thus has a smallest element.

Let r be the smallest element of S.

Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

 $a - bq = 0 \Rightarrow a = bq$

If $0 \notin S$ then S is a subset of the positive integers and thus has a smallest element.

Let r be the smallest element of S.

Then $r \geq 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$. Also, note that

Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}$$
.

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

$$a - bq = 0 \Rightarrow a = bq$$

If $0 \notin S$ then S is a subset of the positive integers and thus has a smallest element.

Let r be the smallest element of S.

Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Also, note that

$$r - b = (a - bq) - b =$$

Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}$.

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

$$a - bq = 0 \Rightarrow a = bq$$

If $0 \notin S$ then S is a subset of the positive integers and thus has a smallest element.

Let r be the smallest element of S.

Then $r \geq 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Also, note that

$$r - b = (a - bq) - b = = a - b(q + 1).$$

Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

$$a - bq = 0 \Rightarrow a = bq$$

If $0 \notin S$ then S is a subset of the positive integers and thus has a smallest element.

Let r be the smallest element of S.

Then $r \geq 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

$$r - b = (a - bq) - b = = a - b(q + 1).$$

Since r - b < r and r is the least element of S, it follows that

Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}$$
.

Note that if $0 \in S$ then There exists $q \in \mathbb{Z}$ such that

$$a - bq = 0 \Rightarrow a = bq$$

If $0 \notin S$ then S is a subset of the positive integers and thus has a smallest element.

Let r be the smallest element of S.

Then $r \geq 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Also, note that

$$r - b = (a - bq) - b = = a - b(q + 1).$$

Since r - b < r and r is the least element of S, it follows that

$$r - b < 0 \Rightarrow r < b$$
.

