MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor

Kevin James

GREATEST COMMON DIVISOR

DEFINITION

Suppose that $a, b \in \mathbb{Z}$. Then we say that $d \in \mathbb{Z}$ is a greatest common divisor (gcd) of a and b if the following conditions are satisfied.

- **1** d > 0.
- 2 d|a and d|b.
- 3 If c|a and c|b then c|d.

GREATEST COMMON DIVISOR

DEFINITION

Suppose that $a, b \in \mathbb{Z}$. Then we say that $d \in \mathbb{Z}$ is a greatest common divisor (gcd) of a and b if the following conditions are satisfied.

- **1** $d \ge 0$.
- 2 d|a and d|b.
- 3 If c|a and c|b then c|d.

NOTATION

If d is the gcd of a and b we may write (a, b) = d.

Greatest Common Divisor

DEFINITION

Suppose that $a, b \in \mathbb{Z}$. Then we say that $d \in \mathbb{Z}$ is a greatest common divisor (gcd) of a and b if the following conditions are satisfied.

- $\mathbf{0} d > 0.$
- 2 d|a and d|b.
- 3 If c|a and c|b then c|d.

NOTATION

If d is the gcd of a and b we may write (a, b) = d.

My Convention

It is sometimes useful to define (0,0) = 0.

THEOREM

Let $a,b\in\mathbb{Z}$ with at least one of them nonzero. Then there exists a unique gcd d of a and b. Moreover d can be realized as an integral linear combination of a and b. That is, there are $m,n\in\mathbb{Z}$ such that

$$d = am + bn$$
.

Further, d is the smallest positive integer of this form.

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b=0 is similar. So, we now assume that a and b are nonzero.

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let
$$S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$$

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let $S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let
$$S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S.

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b|=a\cdot 0+(\pm 1)\cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let $S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S. Since, $d \in S$, there are $x, y \in \mathbb{Z}$ such that d = ax + by.

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let
$$S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S.

Since, $d \in S$, there are $x, y \in \mathbb{Z}$ such that d = ax + by.

It is also clear that d is the smallest such number which is positive.

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let
$$S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S.

Since, $d \in S$, there are $x, y \in \mathbb{Z}$ such that d = ax + by.

It is also clear that d is the smallest such number which is positive.

By the division algorithm, we can write a = dq + r with $0 \le r < d$.

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b|=a\cdot 0+(\pm 1)\cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let
$$S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S.

Since, $d \in S$, there are $x, y \in \mathbb{Z}$ such that d = ax + by.

It is also clear that d is the smallest such number which is positive.

By the division algorithm, we can write a = dq + r with $0 \le r < d$.

Then r = a - dq =

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let
$$S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S.

Since, $d \in S$, there are $x, y \in \mathbb{Z}$ such that d = ax + by.

It is also clear that d is the smallest such number which is positive.

By the division algorithm, we can write a = dq + r with $0 \le r < d$.

Then r = a - dq = a - (ax + by)q =

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let $S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S.

Since, $d \in S$, there are $x, y \in \mathbb{Z}$ such that d = ax + by.

It is also clear that d is the smallest such number which is positive.

By the division algorithm, we can write a = dq + r with $0 \le r < d$.

Then r = a - dq = a - (ax + by)q = a(1 - xq) + b(-yq).

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b=0 is similar. So, we now assume that a and b are nonzero.

Let
$$S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S.

Since, $d \in S$, there are $x, y \in \mathbb{Z}$ such that d = ax + by.

It is also clear that *d* is the smallest such number which is positive.

By the division algorithm, we can write a = dq + r with $0 \le r < d$.

Then
$$r = a - dq = a - (ax + by)q = a(1 - xq) + b(-yq)$$
.

However, $r < d \Rightarrow r \notin S$, (b/c d is the least element of S).

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let
$$S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S.

Since, $d \in S$, there are $x, y \in \mathbb{Z}$ such that d = ax + by.

It is also clear that d is the smallest such number which is positive.

By the division algorithm, we can write a = dq + r with $0 \le r < d$.

Then
$$r = a - dq = a - (ax + by)q = a(1 - xq) + b(-yq)$$
.

However, $r < d \Rightarrow r \notin S$, (b/c d is the least element of S).

Thus r = 0 and d|a.

Suppose that $a, b \in \mathbb{Z}$ with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b| and

$$|b| = a \cdot 0 + (\pm 1) \cdot b.$$

The case that b = 0 is similar. So, we now assume that a and b are nonzero.

Let
$$S = \{ax + by \mid x, y \in \mathbb{Z}; ax + by > 0\}.$$

Note that either a or -a is in S. So, $S \neq \emptyset$.

Using the well ordering principle, let d be the least element of S.

Since, $d \in S$, there are $x, y \in \mathbb{Z}$ such that d = ax + by.

It is also clear that d is the smallest such number which is positive.

By the division algorithm, we can write a = dq + r with $0 \le r < d$.

Then
$$r = a - dq = a - (ax + by)q = a(1 - xq) + b(-yq)$$
.

However, $r < d \Rightarrow r \notin S$, (b/c d is the least element of S).

Thus r = 0 and d|a.

We can prove that d|b in a similar way.

PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d =

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by =

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my)

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a gcd, e|d.

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a gcd, e|d.

So, d = ek and e = dm for some $k, m \in \mathbb{Z}$.

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a gcd, e|d.

So, d = ek and e = dm for some $k, m \in \mathbb{Z}$.

$$\Rightarrow d = dmk \Rightarrow$$

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a gcd, e|d.

So, d = ek and e = dm for some $k, m \in \mathbb{Z}$.

 \Rightarrow $d = dmk \Rightarrow mk = 1 \Rightarrow$

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a gcd, e|d.

So, d = ek and e = dm for some $k, m \in \mathbb{Z}$.

 \Rightarrow $d = dmk \Rightarrow mk = 1 \Rightarrow m, k = \pm 1.$

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a gcd, e|d.

So, d = ek and e = dm for some $k, m \in \mathbb{Z}$.

 $\Rightarrow d = dmk \Rightarrow mk = 1 \Rightarrow m, k = \pm 1.$

So, $d = \pm e$.

Proof continued ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a gcd, e|d.

So, d = ek and e = dm for some $k, m \in \mathbb{Z}$.

 $\Rightarrow d = dmk \Rightarrow mk = 1 \Rightarrow m, k = \pm 1.$

So, $d = \pm e$. However, $e, d \ge 0 \Rightarrow$

Proof continued ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some $k, m \in \mathbb{Z}$.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a gcd, e|d.

So, d = ek and e = dm for some $k, m \in \mathbb{Z}$.

 $\Rightarrow d = dmk \Rightarrow mk = 1 \Rightarrow m, k = \pm 1.$

So, $d = \pm e$. However, $e, d \ge 0 \Rightarrow e = d$.

COMPUTING THE GCD

FACT

If
$$a = bq + r$$
 then $(a, b) = (b, r)$.

COMPUTING THE GCD

FACT

If a = bq + r then (a, b) = (b, r).

EXERCISE

Prove this!

COMPUTING THE GCD

FACT

If a = bq + r then (a, b) = (b, r).

EXERCISE

Prove this!

HINT:

Show that any common divisor of a and b is also a divisor of r and that any common divisor of b and r is a divisor of a.

Given a and b not both zero, first note that (a, b) = (|a|, |b|). So we may replace a and b by |a| and |b| respectively.

Given a and b not both zero, first note that (a, b) = (|a|, |b|). So we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that $a \ge 0$ and that b > 0.

Given a and b not both zero, first note that (a, b) = (|a|, |b|). So we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that $a \ge 0$ and that b > 0.

Use the division algorithm to write

$$a = bq + r$$
; $0 \le r < b$

Given a and b not both zero, first note that (a, b) = (|a|, |b|). So we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that $a \ge 0$ and that b > 0.

Use the division algorithm to write

$$a = bq + r$$
; $0 \le r < b$

Then recall that (a, b) = (b, r).

Given a and b not both zero, first note that (a, b) = (|a|, |b|). So we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that $a \ge 0$ and that b > 0.

Use the division algorithm to write

$$a = bq + r$$
; $0 \le r < b$

Then recall that (a, b) = (b, r).

Now repeat the process with a replaced by b and b replaced by r.

Given a and b not both zero, first note that (a, b) = (|a|, |b|). So we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that $a \ge 0$ and that b > 0.

Use the division algorithm to write

$$a = bq + r$$
; $0 \le r < b$

Then recall that (a, b) = (b, r).

Now repeat the process with a replaced by b and b replaced by r. Continue in this manner until you encounter a remainder of 0 and note that (b,0) = b.

Compute the (246, 180).

Compute the (246, 180). $246 = 180(1) + 66 \Rightarrow$

Compute the (246, 180). $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$.

Compute the (246, 180).
$$246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$$
. $180 = 66(2) + 48 \Rightarrow$

Compute the (246, 180). $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$.

 $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48).$

Compute the (246, 180). $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$. $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48)$. $66 = 48(1) + 18 \Rightarrow$

Compute the (246, 180). $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$. $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48)$. $66 = 48(1) + 18 \Rightarrow (66, 48) = (48, 18)$.

Compute the
$$(246, 180)$$
.
 $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$.
 $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48)$.
 $66 = 48(1) + 18 \Rightarrow (66, 48) = (48, 18)$.
 $48 = 18(2) + 12 \Rightarrow$

Compute the
$$(246, 180)$$
.
 $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$.
 $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48)$.
 $66 = 48(1) + 18 \Rightarrow (66, 48) = (48, 18)$.
 $48 = 18(2) + 12 \Rightarrow (48, 18) = (18, 12)$.

Compute the
$$(246, 180)$$
.
 $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$.
 $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48)$.
 $66 = 48(1) + 18 \Rightarrow (66, 48) = (48, 18)$.
 $48 = 18(2) + 12 \Rightarrow (48, 18) = (18, 12)$.
 $18 = 12(1) + 6 \Rightarrow$

Compute the
$$(246, 180)$$
.
 $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$.
 $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48)$.
 $66 = 48(1) + 18 \Rightarrow (66, 48) = (48, 18)$.
 $48 = 18(2) + 12 \Rightarrow (48, 18) = (18, 12)$.
 $18 = 12(1) + 6 \Rightarrow (18, 12) = (12, 6)$.

Compute the
$$(246, 180)$$
.
 $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$.
 $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48)$.
 $66 = 48(1) + 18 \Rightarrow (66, 48) = (48, 18)$.
 $48 = 18(2) + 12 \Rightarrow (48, 18) = (18, 12)$.
 $18 = 12(1) + 6 \Rightarrow (18, 12) = (12, 6)$.
 $12 = 6(2) + 0 \Rightarrow$

Compute the
$$(246, 180)$$
.
 $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$.
 $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48)$.
 $66 = 48(1) + 18 \Rightarrow (66, 48) = (48, 18)$.
 $48 = 18(2) + 12 \Rightarrow (48, 18) = (18, 12)$.
 $18 = 12(1) + 6 \Rightarrow (18, 12) = (12, 6)$.
 $12 = 6(2) + 0 \Rightarrow (12, 6) = (6, 0) = (6, 0)$

Compute the
$$(246, 180)$$
.
 $246 = 180(1) + 66 \Rightarrow (246, 180) = (180, 66)$.
 $180 = 66(2) + 48 \Rightarrow (180, 66) = (66, 48)$.
 $66 = 48(1) + 18 \Rightarrow (66, 48) = (48, 18)$.
 $48 = 18(2) + 12 \Rightarrow (48, 18) = (18, 12)$.
 $18 = 12(1) + 6 \Rightarrow (18, 12) = (12, 6)$.
 $12 = 6(2) + 0 \Rightarrow (12, 6) = (6, 0) = 6$!

Finding \overline{x} and \overline{y}

The Euclidean algorithm produces:

$$a = bq_1 + r_1$$

$$b = r_1q_2 + r_2$$

$$r_1 = r_2q_3 + r_3$$

$$r_2 = r_3q_4 + r_4$$

$$\vdots$$

$$r_{i-2} = r_{i-1}q_i + r_i$$

$$\vdots$$

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1}$$

$$r_{n-2} = r_{n-1}q_n + r_n$$

$$r_{n-1} = r_nq_{n+1} + 0$$

Finding x and y

The Euclidean algorithm produces:

$$a = bq_{1} + r_{1} \quad \Rightarrow \quad r_{1} = a - bq$$

$$b = r_{1}q_{2} + r_{2} \quad \Rightarrow \quad r_{2} = b - r_{1}q_{2}$$

$$r_{1} = r_{2}q_{3} + r_{3} \quad \Rightarrow \quad r_{3} = r_{1} - r_{2}q_{3}$$

$$r_{2} = r_{3}q_{4} + r_{4} \quad \Rightarrow \quad r_{4} = r_{2} - r_{3}q_{4}$$

$$\vdots \qquad \vdots$$

$$r_{i-2} = r_{i-1}q_{i} + r_{i} \quad \Rightarrow \quad r_{i} = r_{i-2} - r_{i-1}q_{i}$$

$$\vdots \qquad \vdots$$

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} \quad \Rightarrow \quad r_{n-1} = r_{n-3} - r_{n-2}q_{n-1}$$

$$r_{n-2} = r_{n-1}q_{n} + r_{n} \quad \Rightarrow \quad r_{n} = r_{n-2} - r_{n-1}q_{n}$$

$$r_{n-1} = r_{n}q_{n+1} + 0$$

Finding x and y

The Euclidean algorithm produces:

$$a = bq_{1} + r_{1} \quad \Rightarrow \quad r_{1} = a - bq$$

$$b = r_{1}q_{2} + r_{2} \quad \Rightarrow \quad r_{2} = b - r_{1}q_{2}$$

$$r_{1} = r_{2}q_{3} + r_{3} \quad \Rightarrow \quad r_{3} = r_{1} - r_{2}q_{3}$$

$$r_{2} = r_{3}q_{4} + r_{4} \quad \Rightarrow \quad r_{4} = r_{2} - r_{3}q_{4}$$

$$\vdots \qquad \vdots$$

$$r_{i-2} = r_{i-1}q_{i} + r_{i} \quad \Rightarrow \quad r_{i} = r_{i-2} - r_{i-1}q_{i}$$

$$\vdots \qquad \vdots$$

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} \quad \Rightarrow \quad r_{n-1} = r_{n-3} - r_{n-2}q_{n-1}$$

$$r_{n-2} = r_{n-1}q_{n} + r_{n} \quad \Rightarrow \quad r_{n} = r_{n-2} - r_{n-1}q_{n}$$

$$r_{n-1} = r_{n}q_{n+1} + 0$$

Note that $(a, b) = r_n$

The Euclidean algorithm produces:

$$a = bq_{1} + r_{1} \quad \Rightarrow \quad r_{1} = a - bq$$

$$b = r_{1}q_{2} + r_{2} \quad \Rightarrow \quad r_{2} = b - r_{1}q_{2}$$

$$r_{1} = r_{2}q_{3} + r_{3} \quad \Rightarrow \quad r_{3} = r_{1} - r_{2}q_{3}$$

$$r_{2} = r_{3}q_{4} + r_{4} \quad \Rightarrow \quad r_{4} = r_{2} - r_{3}q_{4}$$

$$\vdots \qquad \vdots$$

$$r_{i-2} = r_{i-1}q_{i} + r_{i} \quad \Rightarrow \quad r_{i} = r_{i-2} - r_{i-1}q_{i}$$

$$\vdots \qquad \vdots$$

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} \quad \Rightarrow \quad r_{n-1} = r_{n-3} - r_{n-2}q_{n-1}$$

$$r_{n-2} = r_{n-1}q_{n} + r_{n} \quad \Rightarrow \quad r_{n} = r_{n-2} - r_{n-1}q_{n}$$

$$r_{n-1} = r_{n}q_{n+1} + 0$$

Note that $(a, b) = r_n$ and we can use successive back substitution to write r_n in terms of r_k and r_{k-1} eventually expressing r_n in terms of a and b.

Let's reconsider our previous example: (246, 180) = 6.

$$\begin{array}{rcl} 246 = 180(1) + 66 & \Rightarrow & 66 = 246 + (-1)180 \\ 180 = 66(2) + 48 & \Rightarrow & 48 = 180 + (-2)66 \\ 66 = 48(1) + 18 & \Rightarrow & 18 = 66 + (-1)48 \\ 48 = 18(2) + 12 & \Rightarrow & 12 = 48 + (-2)18 \\ 18 = 12(1) + 6 & \Rightarrow & 6 = 18 + (-1)12 \\ 12 = 6(2) + 0 \end{array}$$

Let's reconsider our previous example: (246, 180) = 6.

$$\begin{array}{rcl} 246 = 180(1) + 66 & \Rightarrow & 66 = 246 + (-1)180 \\ 180 = 66(2) + 48 & \Rightarrow & 48 = 180 + (-2)66 \\ 66 = 48(1) + 18 & \Rightarrow & 18 = 66 + (-1)48 \\ 48 = 18(2) + 12 & \Rightarrow & 12 = 48 + (-2)18 \\ 18 = 12(1) + 6 & \Rightarrow & 6 = 18 + (-1)12 \\ 12 = 6(2) + 0 \end{array}$$

$$6 = 18 + (-1)12 =$$

Let's reconsider our previous example: (246, 180) = 6.

$$\begin{array}{rcl} 246 = 180(1) + 66 & \Rightarrow & 66 = 246 + (-1)180 \\ 180 = 66(2) + 48 & \Rightarrow & 48 = 180 + (-2)66 \\ 66 = 48(1) + 18 & \Rightarrow & 18 = 66 + (-1)48 \\ 48 = 18(2) + 12 & \Rightarrow & 12 = 48 + (-2)18 \\ 18 = 12(1) + 6 & \Rightarrow & 6 = 18 + (-1)12 \\ 12 = 6(2) + 0 \end{array}$$

$$6 = 18 + (-1)12 = 18 + (-1)[48 + (-2)18] =$$

Let's reconsider our previous example: (246, 180) = 6.

$$\begin{array}{rcl} 246 = 180(1) + 66 & \Rightarrow & 66 = 246 + (-1)180 \\ 180 = 66(2) + 48 & \Rightarrow & 48 = 180 + (-2)66 \\ 66 = 48(1) + 18 & \Rightarrow & 18 = 66 + (-1)48 \\ 48 = 18(2) + 12 & \Rightarrow & 12 = 48 + (-2)18 \\ 18 = 12(1) + 6 & \Rightarrow & 6 = 18 + (-1)12 \\ 12 = 6(2) + 0 \end{array}$$

$$6 = 18 + (-1)12 = 18 + (-1)[48 + (-2)18] = (3)18 + (-1)48$$

Let's reconsider our previous example: (246, 180) = 6.

$$\begin{array}{rcl} 246 = 180(1) + 66 & \Rightarrow & 66 = 246 + (-1)180 \\ 180 = 66(2) + 48 & \Rightarrow & 48 = 180 + (-2)66 \\ 66 = 48(1) + 18 & \Rightarrow & 18 = 66 + (-1)48 \\ 48 = 18(2) + 12 & \Rightarrow & 12 = 48 + (-2)18 \\ 18 = 12(1) + 6 & \Rightarrow & 6 = 18 + (-1)12 \\ 12 = 6(2) + 0 \end{array}$$

$$6 = 18 + (-1)12 = 18 + (-1)[48 + (-2)18] = (3)18 + (-1)48$$

$$= (3)[66 + (-1)48] + (-1)48 =$$

Let's reconsider our previous example: (246, 180) = 6.

$$\begin{array}{rcl} 246 = 180(1) + 66 & \Rightarrow & 66 = 246 + (-1)180 \\ 180 = 66(2) + 48 & \Rightarrow & 48 = 180 + (-2)66 \\ 66 = 48(1) + 18 & \Rightarrow & 18 = 66 + (-1)48 \\ 48 = 18(2) + 12 & \Rightarrow & 12 = 48 + (-2)18 \\ 18 = 12(1) + 6 & \Rightarrow & 6 = 18 + (-1)12 \\ 12 = 6(2) + 0 \end{array}$$

$$6 = 18 + (-1)12 = 18 + (-1)[48 + (-2)18] = (3)18 + (-1)48$$
$$= (3)[66 + (-1)48] + (-1)48 = (3)66 + (-4)48$$

Let's reconsider our previous example: (246, 180) = 6.

$$246 = 180(1) + 66 \Rightarrow 66 = 246 + (-1)180$$

$$180 = 66(2) + 48 \Rightarrow 48 = 180 + (-2)66$$

$$66 = 48(1) + 18 \Rightarrow 18 = 66 + (-1)48$$

$$48 = 18(2) + 12 \Rightarrow 12 = 48 + (-2)18$$

$$18 = 12(1) + 6 \Rightarrow 6 = 18 + (-1)12$$

$$12 = 6(2) + 0$$

$$6 = 18 + (-1)12 = 18 + (-1)[48 + (-2)18] = (3)18 + (-1)48$$

$$= (3)[66 + (-1)48] + (-1)48 = (3)66 + (-4)48$$

$$= (3)66 + (-4)[180 + (-2)66] =$$

EXAMPLE

Let's reconsider our previous example: (246, 180) = 6.

$$\begin{array}{rcl} 246 = 180(1) + 66 & \Rightarrow & 66 = 246 + (-1)180 \\ 180 = 66(2) + 48 & \Rightarrow & 48 = 180 + (-2)66 \\ 66 = 48(1) + 18 & \Rightarrow & 18 = 66 + (-1)48 \\ 48 = 18(2) + 12 & \Rightarrow & 12 = 48 + (-2)18 \\ 18 = 12(1) + 6 & \Rightarrow & 6 = 18 + (-1)12 \\ 12 = 6(2) + 0 \end{array}$$

Now write

$$6 = 18 + (-1)12 = 18 + (-1)[48 + (-2)18] = (3)18 + (-1)48$$

$$= (3)[66 + (-1)48] + (-1)48 = (3)66 + (-4)48$$

$$= (3)66 + (-4)[180 + (-2)66] = (11)66 + (-4)180$$

EXAMPLE

Let's reconsider our previous example: (246, 180) = 6.

$$246 = 180(1) + 66 \Rightarrow 66 = 246 + (-1)180$$

$$180 = 66(2) + 48 \Rightarrow 48 = 180 + (-2)66$$

$$66 = 48(1) + 18 \Rightarrow 18 = 66 + (-1)48$$

$$48 = 18(2) + 12 \Rightarrow 12 = 48 + (-2)18$$

$$18 = 12(1) + 6 \Rightarrow 6 = 18 + (-1)12$$

$$12 = 6(2) + 0$$

Now write

$$6 = 18 + (-1)12 = 18 + (-1)[48 + (-2)18] = (3)18 + (-1)48$$
$$= (3)[66 + (-1)48] + (-1)48 = (3)66 + (-4)48$$
$$= (3)66 + (-4)[180 + (-2)66] = (11)66 + (-4)180$$
$$= (11)[246 + (-1)180] + (-4)180 =$$

Example

Let's reconsider our previous example: (246, 180) = 6.

$$\begin{array}{rcl} 246 = 180(1) + 66 & \Rightarrow & 66 = 246 + (-1)180 \\ 180 = 66(2) + 48 & \Rightarrow & 48 = 180 + (-2)66 \\ 66 = 48(1) + 18 & \Rightarrow & 18 = 66 + (-1)48 \\ 48 = 18(2) + 12 & \Rightarrow & 12 = 48 + (-2)18 \\ 18 = 12(1) + 6 & \Rightarrow & 6 = 18 + (-1)12 \\ 12 = 6(2) + 0 \end{array}$$

Now write

$$6 = 18 + (-1)12 = 18 + (-1)[48 + (-2)18] = (3)18 + (-1)48$$

$$= (3)[66 + (-1)48] + (-1)48 = (3)66 + (-4)48$$

$$= (3)66 + (-4)[180 + (-2)66] = (11)66 + (-4)180$$

$$= (11)[246 + (-1)180] + (-4)180 = (11)246 + (-15)180.$$

Example

Let's reconsider our previous example: (246, 180) = 6.

$$\begin{array}{rcl} 246 = 180(1) + 66 & \Rightarrow & 66 = 246 + (-1)180 \\ 180 = 66(2) + 48 & \Rightarrow & 48 = 180 + (-2)66 \\ 66 = 48(1) + 18 & \Rightarrow & 18 = 66 + (-1)48 \\ 48 = 18(2) + 12 & \Rightarrow & 12 = 48 + (-2)18 \\ 18 = 12(1) + 6 & \Rightarrow & 6 = 18 + (-1)12 \\ 12 = 6(2) + 0 \end{array}$$

Now write

$$6 = 18 + (-1)12 = 18 + (-1)[48 + (-2)18] = (3)18 + (-1)48$$

$$= (3)[66 + (-1)48] + (-1)48 = (3)66 + (-4)48$$

$$= (3)66 + (-4)[180 + (-2)66] = (11)66 + (-4)180$$

$$= (11)[246 + (-1)180] + (-4)180 = (11)246 + (-15)180.$$

So, take x = 11 and y = -15.

Relatively Prime Integers

DEFINITION

Two integers a and b are relatively prime or coprime if (a, b) = 1.

RELATIVELY PRIME INTEGERS

DEFINITION

Two integers a and b are relatively prime or coprime if (a, b) = 1.

THEOREM

If a and b are coprime and a bc then a c.

Since a and b are coprime,

Since a and b are coprime, there are $x, y \in \mathbb{Z}$ such that ax + by = 1.

Since a and b are coprime, there are $x, y \in \mathbb{Z}$ such that ax + by = 1.

Since a and b are coprime, there are $x, y \in \mathbb{Z}$ such that ax + by = 1.

$$1 = ax + by \Rightarrow$$

Since a and b are coprime, there are $x, y \in \mathbb{Z}$ such that ax + by = 1.

$$1 = ax + by \quad \Rightarrow \quad c = acx + bcy$$
$$\Rightarrow$$

Since a and b are coprime, there are $x,y\in\mathbb{Z}$ such that ax+by=1.

$$1 = ax + by \Rightarrow c = acx + bcy$$
$$\Rightarrow c = acx + aky \text{ (because } bc = ak)$$
$$\Rightarrow$$

Since a and b are coprime, there are $x,y\in\mathbb{Z}$ such that ax+by=1.

$$1 = ax + by \Rightarrow c = acx + bcy$$

$$\Rightarrow c = acx + aky \text{ (because } bc = ak)$$

$$\Rightarrow c = a(cx + ky)$$

$$\Rightarrow$$

Since a and b are coprime, there are $x, y \in \mathbb{Z}$ such that ax + by = 1.

$$1 = ax + by \Rightarrow c = acx + bcy$$

$$\Rightarrow c = acx + aky \text{ (because } bc = ak)$$

$$\Rightarrow c = a(cx + ky)$$

$$\Rightarrow a|c.$$

DEFINITION

An integer p is a *prime* if p>1 and if the only positive divisors of p are 1 and p.

Definition

An integer p is a *prime* if p > 1 and if the only positive divisors of p are 1 and p.

THEOREM (EUCLID'S LEMMA)

If p is a prime and p|ab then p|a or p|b.

DEFINITION

An integer p is a *prime* if p > 1 and if the only positive divisors of p are 1 and p.

THEOREM (EUCLID'S LEMMA)

If p is a prime and p ab then p a or p b.

Proof.

Suppose that p|ab.

DEFINITION

An integer p is a *prime* if p > 1 and if the only positive divisors of p are 1 and p.

THEOREM (EUCLID'S LEMMA)

If p is a prime and p|ab then p|a or p|b.

Proof.

Suppose that p|ab. If p|a then the conclusion of the theorem holds.

DEFINITION

An integer p is a *prime* if p > 1 and if the only positive divisors of p are 1 and p.

THEOREM (EUCLID'S LEMMA)

If p is a prime and p|ab then p|a or p|b.

Proof.

Suppose that p|ab. If p|a then the conclusion of the theorem holds. Now, suppose that $p \nmid a$.

DEFINITION

An integer p is a *prime* if p > 1 and if the only positive divisors of p are 1 and p.

THEOREM (EUCLID'S LEMMA)

If p is a prime and p|ab then p|a or p|b.

Proof.

Suppose that p|ab. If p|a then the conclusion of the theorem holds. Now, suppose that $p \nmid a$.

Then (a, p) = 1 because the only positive divisors of p are 1 and p.

DEFINITION

An integer p is a *prime* if p > 1 and if the only positive divisors of p are 1 and p.

THEOREM (EUCLID'S LEMMA)

If p is a prime and p|ab then p|a or p|b.

Proof.

Suppose that p|ab. If p|a then the conclusion of the theorem holds. Now, suppose that $p \nmid a$.

Then (a, p) = 1 because the only positive divisors of p are 1 and p. Thus by our previous theorem, p|b.

1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

PROOF.

We will prove part 1 by induction on n.

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

PROOF.

We will prove part 1 by induction on n.

The result is trivial when n = 1.

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

Proof.

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some $k \ge 1$.

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

Proof.

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some $k \ge 1$.

Now, suppose that $p|(a_1a_2...a_{k+1}) =$

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

Proof.

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some $k \ge 1$.

Now, suppose that $p|(a_1a_2...a_{k+1}) = (a_1a_2...a_k) \cdot a_{k+1}$.

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

Proof.

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some $k \ge 1$.

Now, suppose that $p|(a_1a_2...a_{k+1}) = (a_1a_2...a_k) \cdot a_{k+1}$.

If $p|a_{k+1}$ then the conclusion of the theorem holds.

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

Proof.

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some $k \ge 1$.

Now, suppose that $p|(a_1a_2...a_{k+1}) = (a_1a_2...a_k) \cdot a_{k+1}$.

If $p|a_{k+1}$ then the conclusion of the theorem holds.

If $p \nmid a_{k+1}$ then by Euclid's lemma, $p \mid (a_1 a_3 \dots a_k)$.

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

Proof.

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some $k \ge 1$.

Now, suppose that $p|(a_1a_2...a_{k+1}) = (a_1a_2...a_k) \cdot a_{k+1}$.

If $p|a_{k+1}$ then the conclusion of the theorem holds.

If $p \nmid a_{k+1}$ then by Euclid's lemma, $p \mid (a_1 a_3 \dots a_k)$.

In thisr case, our induction hypothesis implies that $p|a_i$ for $a \le i \le k$ and the conclusion of the theorem holds.

- 1 If $p|(a_1a_2...a_n)$ then $p|a_i$ for some $1 \le i \le n$.
- 2 If $p|a^m$ then p|a.

Proof.

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some $k \ge 1$.

Now, suppose that $p|(a_1a_2...a_{k+1}) = (a_1a_2...a_k) \cdot a_{k+1}$.

If $p|a_{k+1}$ then the conclusion of the theorem holds.

If $p \nmid a_{k+1}$ then by Euclid's lemma, $p \mid (a_1 a_3 \dots a_k)$.

In this case, our induction hypothesis implies that $p|a_i$ for

 $a \le i \le k$ and the conclusion of the theorem holds.

Part 2 follows from part 1.

Unique Factorization

THEOREM (FUNDAMENTAL THEOREM OF ARITHMETIC)

Every integer $n \ge 2$ can be expressed as a product of primes and this factorization is unique up to rearrangement of the factors.

Existence: Since 2 is prime, the theorem holds for n=2.

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$.

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$. Let's consider k + 1.

PROOF

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$.

Let's consider k + 1.

If k + 1 is prime then it is already factored.

Proof

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$.

Let's consider k + 1.

If k + 1 is prime then it is already factored.

If k + 1 is not prime then it has a divisor other than itself and 1.

Proof

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$.

Let's consider k + 1.

If k + 1 is prime then it is already factored.

If k + 1 is not prime then it has a divisor other than itself and 1.

Thus we can write k + 1 = mr with $1 < m \le r < k + 1$.

PROOF

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$.

Let's consider k + 1.

If k + 1 is prime then it is already factored.

If k + 1 is not prime then it has a divisor other than itself and 1.

Thus we can write k + 1 = mr with $1 < m \le r < k + 1$.

Since $2 \le m \le r \le k$ our induction hypothesis implies that both m and r can be factored into primes, say

PROOF

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$.

Let's consider k + 1.

If k + 1 is prime then it is already factored.

If k + 1 is not prime then it has a divisor other than itself and 1.

Thus we can write k + 1 = mr with $1 < m \le r < k + 1$.

Since $2 \le m \le r \le k$ our induction hypothesis implies that both m and r can be factored into primes, say

$$m = p_1 \cdot \cdots \cdot p_j$$
, $r = q_1 \cdot \cdots \cdot q_i$.

Proof

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$.

Let's consider k + 1.

If k + 1 is prime then it is already factored.

If k + 1 is not prime then it has a divisor other than itself and 1.

Thus we can write k + 1 = mr with $1 < m \le r < k + 1$.

Since $2 \le m \le r \le k$ our induction hypothesis implies that both m and r can be factored into primes, say

$$m = p_1 \cdot \cdots \cdot p_i, r = q_1 \cdot \cdots \cdot q_i.$$

Then
$$k + 1 = mr =$$

PROOF

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$.

Let's consider k + 1.

If k + 1 is prime then it is already factored.

If k + 1 is not prime then it has a divisor other than itself and 1.

Thus we can write k + 1 = mr with $1 < m \le r < k + 1$.

Since $2 \le m \le r \le k$ our induction hypothesis implies that both m and r can be factored into primes, say

$$m = p_1 \cdot \cdots \cdot p_j, r = q_1 \cdot \cdots \cdot q_i.$$

Then $k + 1 = mr = p_1 \cdot \dots \cdot p_j q_1 \cdot \dots \cdot q_i$ is a prime factorization of k + 1.

Proof

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for $2 \le n \le k$ for some $k \ge 2$.

Let's consider k + 1.

If k + 1 is prime then it is already factored.

If k + 1 is not prime then it has a divisor other than itself and 1.

Thus we can write k + 1 = mr with $1 < m \le r < k + 1$.

Since $2 \le m \le r \le k$ our induction hypothesis implies that both m and r can be factored into primes, say

$$m=p_1\cdot\cdots\cdot p_j,\ r=q_1\cdot\cdots\cdot q_i.$$

Then $k + 1 = mr = p_1 \cdot \dots \cdot p_j q_1 \cdot \dots \cdot q_i$ is a prime factorization of k + 1.

It follows by strong induction than any $n \ge 2$ has a factorization into primes.

Uniqueness: Suppose that we have two factorizations of n:

Uniqueness: Suppose that we have two factorizations of n: $n = p_1 \dots p_t$ and $n = q_1 \dots q_s$ with $t \le s$.

Uniqueness: Suppose that we have two factorizations of n:

$$n=p_1\dots p_t$$
 and $n=q_1\dots q_s$ with $t\leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Uniqueness: Suppose that we have two factorizations of n:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus $p_1|(q_1\ldots q_s)$.

Uniqueness: Suppose that we have two factorizations of n:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus $p_1|(q_1\ldots q_s)$.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

Uniqueness: Suppose that we have two factorizations of *n*:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus $p_1|(q_1\ldots q_s)$.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

After relabeling the q_i 's we may assume that $p_1|q_1$.

Uniqueness: Suppose that we have two factorizations of *n*:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus $p_1|(q_1\ldots q_s)$.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

After relabeling the q_i 's we may assume that $p_1|q_1$.

Since, q_1 is prime, it follows that $p_1=q_1$ and we have

Uniqueness: Suppose that we have two factorizations of *n*:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus
$$p_1|(q_1\ldots q_s)$$
.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

After relabeling the q_i 's we may assume that $p_1|q_1$.

Since, q_1 is prime, it follows that $p_1=q_1$ and we have

$$p_1 \dots p_t = p_1 q_2 \dots q_s \Rightarrow$$

Uniqueness: Suppose that we have two factorizations of *n*:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus
$$p_1|(q_1\ldots q_s)$$
.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

After relabeling the q_i 's we may assume that $p_1|q_1$.

Since, q_1 is prime, it follows that $p_1 = q_1$ and we have

$$p_1 \ldots p_t = p_1 q_2 \ldots q_s \Rightarrow p_2 \ldots p_t = q_2 \ldots q_s$$

Uniqueness: Suppose that we have two factorizations of *n*:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus
$$p_1|(q_1\ldots q_s)$$
.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

After relabeling the q_i 's we may assume that $p_1|q_1$.

Since, q_1 is prime, it follows that $p_1=q_1$ and we have

$$p_1 \ldots p_t = p_1 q_2 \ldots q_s \Rightarrow p_2 \ldots p_t = q_2 \ldots q_s$$

Repeating this argument, we see that after relabeling the q_i 's, we will have $p_1 = q_1$,

Uniqueness: Suppose that we have two factorizations of *n*:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus
$$p_1|(q_1\ldots q_s)$$
.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

After relabeling the q_i 's we may assume that $p_1|q_1$.

Since, q_1 is prime, it follows that $p_1=q_1$ and we have

$$p_1 \ldots p_t = p_1 q_2 \ldots q_s \Rightarrow p_2 \ldots p_t = q_2 \ldots q_s$$

Repeating this argument, we see that after relabeling the q_i 's, we will have $p_1 = q_1$, $p_2 = q_2$,

Uniqueness: Suppose that we have two factorizations of *n*:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus
$$p_1|(q_1\ldots q_s)$$
.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

After relabeling the q_i 's we may assume that $p_1|q_1$.

Since, q_1 is prime, it follows that $p_1 = q_1$ and we have

$$p_1 \ldots p_t = p_1 q_2 \ldots q_s \Rightarrow p_2 \ldots p_t = q_2 \ldots q_s$$

Repeating this argument, we see that after relabeling the q_i 's, we will have $p_1 = q_1$, $p_2 = q_2$,..., $p_{t-1} = q_{t-1}$

Uniqueness: Suppose that we have two factorizations of *n*:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus
$$p_1|(q_1\ldots q_s)$$
.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

After relabeling the q_i 's we may assume that $p_1|q_1$.

Since, q_1 is prime, it follows that $p_1 = q_1$ and we have

$$p_1 \ldots p_t = p_1 q_2 \ldots q_s \Rightarrow p_2 \ldots p_t = q_2 \ldots q_s$$

Repeating this argument, we see that after relabeling the q_i 's, we will have $p_1 = q_1$, $p_2 = q_2$,..., $p_{t-1} = q_{t-1}$ and $p_t = q_t$... q_s .

Uniqueness: Suppose that we have two factorizations of *n*:

$$n = p_1 \dots p_t$$
 and $n = q_1 \dots q_s$ with $t \leq s$.

$$\Rightarrow p_1 \dots p_t = q_1 \dots q_s$$

Thus
$$p_1|(q_1\ldots q_s)$$
.

By our corollary, $p_1|q_i$ for some $1 \le i \le s$.

After relabeling the q_i 's we may assume that $p_1|q_1$.

Since, q_1 is prime, it follows that $p_1 = q_1$ and we have

$$p_1 \ldots p_t = p_1 q_2 \ldots q_s \Rightarrow p_2 \ldots p_t = q_2 \ldots q_s$$

Repeating this argument, we see that after relabeling the q_i 's, we

will have $p_1 = q_1, p_2 = q_2,..., p_{t-1} = q_{t-1}$ and $p_t = q_t ... q_s$.

Since p_t is prime, it follows that there must be only one prime on the right (i.e. s = t) and $p_t = q_t$.

COROLLARY

If $n \ge 2$ then there are primes $p_1 < p_2 < \dots < p_k$ and positive integers e_1, \dots, e_k such that

$$n=p_1^{e_1}\dots p_k^{e_k},$$

and this factorization is unique.

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

How MANY PRIMES?

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete. Suppose that p_1, p_2, \ldots, p_k is a list of primes.

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p_1, p_2, \ldots, p_k is a list of primes.

Consider
$$n = (p_1 p_2 \dots p_k) + 1$$
.

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.

Suppose that p_1, p_2, \ldots, p_k is a list of primes.

Consider $n = (p_1 p_2 \dots p_k) + 1$.

Now FTA guarantees us that n has at least one prime factor, say q.

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.

Suppose that p_1, p_2, \ldots, p_k is a list of primes.

Consider $n = (p_1 p_2 \dots p_k) + 1$.

Now FTA guarantees us that n has at least one prime factor, say q. If $q|(p_1 \dots p_k)$ then we would be able to write

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p_1, p_2, \ldots, p_k is a list of primes.

Consider $n = (p_1 p_2 \dots p_k) + 1$.

Now FTA guarantees us that n has at least one prime factor, say q. If $q|(p_1 \dots p_k)$ then we would be able to write

 $(p_1 \dots p_k) = qm$ and n = qr for some $m, r \in \mathbb{Z}$,

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p_1, p_2, \ldots, p_k is a list of primes.

Consider
$$n = (p_1 p_2 \dots p_k) + 1$$
.

Now FTA guarantees us that n has at least one prime factor, say q.

If $q|(p_1 \dots p_k)$ then we would be able to write

 $(p_1 \dots p_k) = qm$ and n = qr for some $m, r \in \mathbb{Z}$, and then we would have

$$1 = n - (p_1 \dots p_k) = qm - qr = q(m-r) \Rightarrow q|1$$

which cannot be true.

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p_1, p_2, \ldots, p_k is a list of primes.

Consider
$$n = (p_1 p_2 \dots p_k) + 1$$
.

Now FTA guarantees us that n has at least one prime factor, say q.

If $q|(p_1 \dots p_k)$ then we would be able to write

$$(p_1 \dots p_k) = qm$$
 and $n = qr$ for some $m, r \in \mathbb{Z}$, and

then we would have

$$1 = n - (p_1 \dots p_k) = qm - qr = q(m-r) \Rightarrow q|1$$

which cannot be true.

Thus
$$q \not| (p_1 \dots p_k)$$
,

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p_1, p_2, \ldots, p_k is a list of primes.

Consider
$$n = (p_1 p_2 \dots p_k) + 1$$
.

Now FTA guarantees us that n has at least one prime factor, say q.

If $q|(p_1 \dots p_k)$ then we would be able to write

$$(p_1 \dots p_k) = qm$$
 and $n = qr$ for some $m, r \in \mathbb{Z}$, and then we would have

$$1 = n - (p_1 \dots p_k) = qm - qr = q(m-r) \Rightarrow q|1$$

Thus $q \not| (p_1 \dots p_k)$, and we have found a prime q which was not on our list.

THEOREM (EUCLID'S THEOREM)

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p_1, p_2, \ldots, p_k is a list of primes.

Consider
$$n = (p_1 p_2 \dots p_k) + 1$$
.

Now FTA guarantees us that n has at least one prime factor, say q.

If $q|(p_1 \dots p_k)$ then we would be able to write

$$(p_1 \dots p_k) = qm$$
 and $n = qr$ for some $m, r \in \mathbb{Z}$, and then we would have

$$1 = n - (p_1 \dots p_k) = qm - qr = q(m-r) \Rightarrow q|1$$

which cannot be true.

Thus $q \not| (p_1 \dots p_k)$, and we have found a prime q which was not on our list.

Thus any finite list of primes is incomplete.

