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GREATEST COMMON DIVISOR

DEFINITION

Suppose that a, b € Z. Then we say that d € Z is a greatest
common divisor (gcd) of a and b if the following conditions are

satisfied.
O d>0.
® d|a and d|b.
® If c|a and c|b then c|d.
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Suppose that a, b € Z. Then we say that d € Z is a greatest
common divisor (gcd) of a and b if the following conditions are

satisfied.
O d>0.
® d|a and d|b.
® If c|a and c|b then c|d.

If d is the ged of a and b we may write (a, b) = d.
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GREATEST COMMON DIVISOR

DEFINITION

Suppose that a, b € Z. Then we say that d € Z is a greatest
common divisor (gcd) of a and b if the following conditions are

satisfied.
O d>0.
® d|a and d|b.
® If c|a and c|b then c|d.

If d is the ged of a and b we may write (a, b) = d.

It is sometimes useful to define (0,0) = 0.

Kevin James MTHSC 412 Section 2.4 — Prime Factors and Greatest Commr




THEOREM

Let a, b € Z with at least one of them nonzero. Then there exists
a unique gcd d of a and b. Moreover d can be realized as an
integral linear combination of a and b. That is, there are m,n € 7
such that

d = am + bn.

Further, d is the smallest positive integer of this form.

Kevin James MTHSC 412 Section 2.4 — Prime Factors and Greatest Commr



PROOF

Suppose that a, b € Z with at least one being nonzero.

v
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PROOF

Suppose that a, b € Z with at least one being nonzero.
Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

v
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PROOF

Suppose that a, b € Z with at least one being nonzero.
Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.
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ProOOF

Suppose that a, b € Z with at least one being nonzero.
Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

v
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PROOF

Suppose that a, b € Z with at least one being nonzero.
Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

v
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PROOF

Suppose that a, b € Z with at least one being nonzero.
Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

v
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PROOF

Suppose that a, b € Z with at least one being nonzero.
Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
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PROOF

Suppose that a, b € Z with at least one being nonzero.
Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x,y € Z such that d = ax + by.
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PROOF

Suppose that a, b € Z with at least one being nonzero.
Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x,y € Z such that d = ax + by.

It is also clear that d is the smallest such number which is positive.
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PROOF

Suppose that a, b € Z with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x,y € Z such that d = ax + by.

It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dq+ r with 0 < r < d.
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PROOF

Suppose that a, b € Z with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x,y € Z such that d = ax + by.

It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dq+ r with 0 < r < d.
Then r=a—dq =
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PROOF

Suppose that a, b € Z with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x,y € Z such that d = ax + by.

It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dq+ r with 0 < r < d.
Then r=a—dg=a— (ax+ by)qg =
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PROOF

Suppose that a, b € Z with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x,y € Z such that d = ax + by.

It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dq+ r with 0 < r < d.
Then r =a—dq=a— (ax+ by)q = a(1l — xq) + b(—yq).
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PROOF

Suppose that a, b € Z with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x,y € Z such that d = ax + by.

It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dq+ r with 0 < r < d.
Then r =a—dq=a— (ax+ by)q = a(1l — xq) + b(—yq).
However, r < d = r ¢ S, (b/c d is the least element of S).
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PROOF

Suppose that a, b € Z with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x,y € Z such that d = ax + by.

It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dq+ r with 0 < r < d.
Then r =a—dq=a— (ax+ by)q = a(1l — xq) + b(—yq).
However, r < d = r ¢ S, (b/c d is the least element of S).

Thus r =0 and d|a.
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PROOF

Suppose that a, b € Z with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and

|b| =a-04 (£1)- b.

The case that b = 0 is similar. So, we now assume that a and b
are nonzero.

Let S={ax+ by | x,y €Z;ax+ by > 0}.

Note that either a or —aisin S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x,y € Z such that d = ax + by.

It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dq+ r with 0 < r < d.
Then r =a—dq=a— (ax+ by)q = a(1l — xq) + b(—yq).
However, r < d = r ¢ S, (b/c d is the least element of S).

Thus r =0 and d|a.

We can prove that d|b in a similar way.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.
Then we have a = ck and b = cm for some k, m € Z.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.
Then we have a = ck and b = cm for some k, m € Z.
Thus d =
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.
Then we have a = ck and b = cm for some k, m € Z.
Thus d = ax + by =
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.
Then we have a = ck and b = cm for some k, m € Z.
Thus d = ax + by = ckx + cmy = c(kx + my)
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.
Then we have a = ck and b = cm for some k, m € Z.
Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.
Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.
So, d is the gcd of a and b.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.
Since d|a and d|b and since e is a gcd, d|e.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.
So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.
Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a ged, eld.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.
So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.
Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a ged, eld.

So, d = ek and e = dm for some k, m € Z.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.
So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.
Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a ged, eld.

So, d = ek and e = dm for some k, m € Z.

= d=dmk =
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.
So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.
Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a ged, eld.

So, d = ek and e = dm for some k, m € Z.
=d=dmk=mk=1=
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.
So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.
Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a ged, eld.

So, d = ek and e = dm for some k, m € Z.

=d=dmk= mk=1= m, k= +1.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.
So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.
Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a ged, eld.

So, d = ek and e = dm for some k, m € Z.

=d=dmk= mk=1= m, k= +1.

So, d = +e.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.
So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.
Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a ged, eld.

So, d = ek and e = dm for some k, m € Z.

=d=dmk= mk=1= m, k= +1.

So, d = +e. However, e,d > 0 =
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a gcd, d|e.

Since e|a and e|b and since d is a ged, eld.

So, d = ek and e = dm for some k, m € Z.

=d=dmk= mk=1= m, k= +1.

So, d = +e. However, e,d > 0= e =d. O
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COMPUTING THE GCD

If a= bq+ r then (a, b) = (b, r).
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COMPUTING THE GCD

If a= bq+ r then (a, b) = (b, r).

Prove this! \
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COMPUTING THE GCD

If a= bq+ r then (a, b) = (b, r).

Prove this! \

Show that any common divisor of a and b is also a divisor of r and
that any common divisor of b and r is a divisor of a.
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EUCLIDEAN ALGORITHM

Given a and b not both zero, first note that (a, b) = (|al, |b|). So
we may replace a and b by |a| and |b| respectively.
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EUCLIDEAN ALGORITHM

Given a and b not both zero, first note that (a, b) = (|al, |b|). So
we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that a > 0
and that b > 0.
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EUCLIDEAN ALGORITHM

Given a and b not both zero, first note that (a, b) = (|al, |b|). So
we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that a > 0
and that b > 0.

Use the division algorithm to write

a=bg+r, 0<r<b
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EUCLIDEAN ALGORITHM

Given a and b not both zero, first note that (a, b) = (|al, |b|). So
we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that a > 0
and that b > 0.

Use the division algorithm to write

a=bg+r, 0<r<b

Then recall that (a, b) = (b, r).
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EUCLIDEAN ALGORITHM

Given a and b not both zero, first note that (a, b) = (|al, |b|). So
we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that a > 0
and that b > 0.

Use the division algorithm to write

a=bg+r, 0<r<b

Then recall that (a, b) = (b, r).
Now repeat the process with a replaced by b and b replaced by r.
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EUCLIDEAN ALGORITHM

Given a and b not both zero, first note that (a, b) = (|al, |b|). So
we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that a > 0
and that b > 0.

Use the division algorithm to write

a=bg+r, 0<r<b

Then recall that (a, b) = (b, r).

Now repeat the process with a replaced by b and b replaced by r.
Continue in this manner until you encounter a remainder of 0 and
note that (b,0) = b.
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EXAMPLE

Compute the (246,180).
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EXAMPLE

Compute the (246,180).
246 = 180(1) + 66 =
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EXAMPLE

Compute the (246,180).
246 = 180(1) + 66 = (246, 180) = (180, 66).
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EXAMPLE

Compute the (246,180).
246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 =
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EXAMPLE

Compute the (246,180).
246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 =
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 = (66, 48) = (48, 18).
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 = (66, 48) = (48, 18).

48 = 18(2) + 12 =
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 = (66, 48) = (48, 18).

48 = 18(2) + 12 = (48,18) = (18,12).
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 = (66, 48) = (48, 18).

48 = 18(2) + 12 = (48,18) = (18,12).

18 = 12(1) + 6 =
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 = (66, 48) = (48, 18).

48 = 18(2) + 12 = (48,18) = (18,12).

18 = 12(1) + 6 = (18,12) = (12,6).
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 = (66, 48) = (48, 18).

48 = 18(2) + 12 = (48,18) = (18,12).

18 = 12(1) + 6 = (18,12) = (12,6).
12=6(2)+0=
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 = (66, 48) = (48, 18).

48 = 18(2) + 12 = (48,18) = (18,12).

18 = 12(1) + 6 = (18,12) = (12,6).

12 = 6(2) + 0 = (12,6) = (6,0) =
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 = (66, 48) = (48, 18).

48 = 18(2) + 12 = (48,18) = (18,12).

18 = 12(1) + 6 = (18,12) = (12,6).

12 = 6(2) + 0 = (12,6) = (6,0) = 6!
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FINDING x AND y

The Euclidean algorithm produces:
a=bqg+n
b=ng+nr
n=nrqg+n

rn=r3qs+
fi2 = ri-1q;i + f;

-3 = m—2qn-1+ -1
fh—2 = rn—1qn + In

fn—1 = rqn+1 + 0
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FINDING x AND y

The Euclidean algorithm produces:

a=bg1+n = n=a-—bqg

b=rngp+n = n=b—ng
n=nrg+mn = rn=rn—ng
n=mnq+rn = rn=1rmn-—1rq
fi—p =1ri—1qi +r = r="ri—2—ri-1q;
'h—3 = '—24qn—-1 + rh—1 = I'n—1="Ip—3 — Ih—2qn-1
fh—2 = rh—1qGn + In = In=1"Ih—2—Ih—1qn

fn—1 = rgn+1 + 0
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FINDING x AND y

The Euclidean algorithm produces:

a=bg1+n = n=a-—bqg

b=rngp+n = n=b—ng
n=nrg+mn = rn=rn—ng
n=mnq+rn = rn=1rmn-—1rq
fi—p =1ri—1qi +r = r="ri—2—ri-1q;
'h—3 = '—24qn—-1 + rh—1 = I'n—1="Ip—3 — Ih—2qn-1
fh—2 = rh—1qGn + In = In=1"Ih—2—Ih—1qn

fn—1 = rgn+1 + 0

Note that (a, b) = r,
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FINDING x AND y

The Euclidean algorithm produces:

a=bg1+n = n=a-—bqg

b=rngp+n = n=b—ng
n=nrg+mn = rn=rn—ng
n=mnq+rn = rn=1rmn-—1rq
fi—p =1ri—1qi +r = r="ri—2—ri-1q;
'h—3 = '—24qn—-1 + rh—1 = I'n—1="Ip—3 — Ih—2qn-1
fh—2 = rh—1qGn + In = In=1"Ih—2—Ih—1qn

rn—1= rmqns1 + 0

Note that (a, b) = r, and we can use successive back substitution
to write r, in terms of r, and ri_1 eventually expressing r,, in
terms of a and b.



EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) + 48 = 48 =180+ (—2)66
66 = 48(1) + 18 = 18 =166+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12

12=6(2) +0

v
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) + 48 = 48 =180+ (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=6(2) +0
Now write
6 = 18+ (—-1)12=

v
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] =

v
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] = (3)18 + (—1)48

v
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] = (3)18 + (—1)48

= (3)[66 + (—1)48] + (—1)48 =
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] = (3)18 + (—1)48

= (3)[66 + (—1)48] + (—1)48 = (3)66 + (—4)48
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] = (3)18 + (—1)48

(3)[66 + (—1)48] + (—1)48 = (3)66 + (—4)48
(3)66 + (—4)[180 + (—2)66] =
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] = (3)18 + (—1)48

(3)[66 + (—1)48] + (—1)48 = (3)66 + (—4)48
(3)66 + (—4)[180 + (—2)66] = (11)66 + (—4)180
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] = (3)18 + (—1)48

(3)[66 + (—1)48] + (—1)48 = (3)66 + (—4)48
(3)66 + (—4)[180 + (—2)66] = (11)66 + (—4)180
= (11)[246 + (—1)180] + (—4)180 =
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] = (3)18 + (—1)48

(3)[66 + (—1)48] + (—1)48 = (3)66 + (—4)48
(3)66 + (—4)[180 + (—2)66] = (11)66 + (—4)180
= (11)[246 + (—1)180] + (—4)180 = (11)246 + (—15)180.
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] = (3)18 + (—1)48

(3)[66 + (—1)48] + (—1)48 = (3)66 + (—4)48
(3)66 + (—4)[180 + (—2)66] = (11)66 + (—4)180
= (11)[246 + (—1)180] + (—4)180 = (11)246 + (—15)180.

So, take x = 11 and y = —15.
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RELATIVELY PRIME INTEGERS

Two integers a and b are relatively prime or coprime if (a, b) = 1.
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RELATIVELY PRIME INTEGERS

Two integers a and b are relatively prime or coprime if (a, b) = 1.

If a and b are coprime and albc then alc. l
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PROOF.

Since a and b are coprime,
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PROOF.

Since a and b are coprime, there are x,y € Z such that
ax + by = 1.
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PROOF.

Since a and b are coprime, there are x,y € Z such that
ax + by = 1.
Since a|bc there is k € Z such that bc = ak.
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PROOF.

Since a and b are coprime, there are x,y € Z such that
ax + by = 1.
Since a|bc there is k € Z such that bc = ak. So,

=ax+by =
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PROOF.

Since a and b are coprime, there are x,y € Z such that
ax + by = 1.
Since a|bc there is k € Z such that bc = ak. So,

l=ax+by = c=acx+ bcy
=
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PROOF.

Since a and b are coprime, there are x,y € Z such that
ax + by = 1.
Since a|bc there is k € Z such that bc = ak. So,

l=ax+by = c=acx+ bcy
= ¢ =acx + aky (because bc = ak)
=
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PROOF.

Since a and b are coprime, there are x,y € Z such that
ax + by = 1.
Since a|bc there is k € Z such that bc = ak. So,

l=ax+by = c=acx+ bcy
= ¢ =acx + aky (because bc = ak)
= c¢=a(cx+ ky)
=
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PROOF.

Since a and b are coprime, there are x,y € Z such that
ax + by = 1.
Since a|bc there is k € Z such that bc = ak. So,

l=ax+by = c=acx+ bcy
= ¢ =acx + aky (because bc = ak)
= c¢=a(cx+ ky)
= alc.
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An integer p is a prime if p > 1 and if the only positive divisors of
p are 1 and p.
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An integer p is a prime if p > 1 and if the only positive divisors of
p are 1 and p.

THEOREM (EucLID’S LEMMA)

If p is a prime and p|ab then p|a or p|b.
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An integer p is a prime if p > 1 and if the only positive divisors of
p are 1 and p.

THEOREM (EUCLID’S LEMMA )

If p is a prime and p|ab then p|a or p|b.

Suppose that p|ab.

Kevin James MTHSC 412 Section 2.4 — Prime Factors and Greatest Comm



An integer p is a prime if p > 1 and if the only positive divisors of
p are 1 and p.

THEOREM (EUCLID’S LEMMA )

If p is a prime and p|ab then p|a or p|b.

Suppose that p|ab. If p|a then the conclusion of the theorem holds.
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An integer p is a prime if p > 1 and if the only positive divisors of
p are 1 and p.

THEOREM (EUCLID’S LEMMA )

If p is a prime and p|ab then p|a or p|b.

Suppose that p|ab. If p|a then the conclusion of the theorem holds.
Now, suppose that p fa.
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An integer p is a prime if p > 1 and if the only positive divisors of
p are 1 and p.

THEOREM (EUCLID’S LEMMA )

If p is a prime and p|ab then p|a or p|b.

Suppose that p|ab. If p|a then the conclusion of the theorem holds.
Now, suppose that p fa.

Then (a, p) = 1 because the only positive divisors of p are 1 and p.
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An integer p is a prime if p > 1 and if the only positive divisors of
p are 1 and p.

THEOREM (EUCLID’S LEMMA )

If p is a prime and p|ab then p|a or p|b.

Suppose that p|ab. If p|a then the conclusion of the theorem holds.
Now, suppose that p fa.

Then (a, p) = 1 because the only positive divisors of p are 1 and p.
Thus by our previous theorem, p|b. O
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.
® If p|a™ then p|a.
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.

® If p|a™ then p|a.

v

PROOF.

We will prove part 1 by induction on n.

A
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.

® If p|a™ then p|a.

v

PROOF.

We will prove part 1 by induction on n.
The result is trivial when n = 1.

A
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.

® If p|a™ then p|a.

PROOF.

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some k > 1.

| \

A
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.
® If p|a™ then p|a.

PROOF.

| A

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some k > 1.
Now, suppose that p|(aiaz...ak+1) =

A
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.
® If p|a™ then p|a.

PROOF.

| \

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some k > 1.
Now, suppose that p|(aiaz...akr1) = (a1a2. .. ak) - ak+1-

A
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.
® If p|a™ then p|a.

PROOF.

| \

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some k > 1.
Now, suppose that p|(aiaz...akr1) = (a1a2. .. ak) - ak+1-

If plak+1 then the conclusion of the theorem holds.

A

Kevin James MTHSC 412 Section 2.4 — Prime Factors and Greatest Comm



COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.
® If p|a™ then p|a.

PROOF.

| \

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some k > 1.
Now, suppose that p|(aiaz...akr1) = (a1a2. .. ak) - ak+1-

If plak+1 then the conclusion of the theorem holds.

If p fak+1 then by Euclid's lemma, p|(aias. .. ak).

A
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.
® If p|a™ then p|a.

PROOF.

| \

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some k > 1.
Now, suppose that p|(aiaz...akr1) = (a1a2. .. ak) - ak+1-

If plak+1 then the conclusion of the theorem holds.

If p fak+1 then by Euclid's lemma, p|(aias. .. ak).

In thisr case, our induction hypothesis implies that p|a; for
a < j < k and the conclusion of the theorem holds.

A
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COROLLARY

® /fp|(a1az...ap) then p|a; for some 1 < i< n.
® If p|a™ then p|a.

PROOF.

| \

We will prove part 1 by induction on n.

The result is trivial when n = 1.

Now suppose that the result holds for n = k for some k > 1.

Now, suppose that p|(aiaz...akr1) = (a1a2. .. ak) - ak+1-

If plak+1 then the conclusion of the theorem holds.

If p fak+1 then by Euclid's lemma, p|(aias. .. ak).

In thisr case, our induction hypothesis implies that p|a; for

a < j < k and the conclusion of the theorem holds.

Part 2 follows from part 1. [

A
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UNIQUE FACTORIZATION

THEOREM (FUNDAMENTAL THEOREM OF ARITHMETIC)

Every integer n > 2 can be expressed as a product of primes and
this factorization is unique up to rearrangement of the factors.
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.
Suppose that the theorem holds for 2 < n < k for some k > 2.
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.
Suppose that the theorem holds for 2 < n < k for some k > 2.
Let's consider k + 1.
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.
Suppose that the theorem holds for 2 < n < k for some k > 2.
Let's consider k + 1.

If kK + 1 is prime then it is already factored.
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.
Suppose that the theorem holds for 2 < n < k for some k > 2.
Let's consider k + 1.

If kK + 1 is prime then it is already factored.

If kK + 1 is not prime then it has a divisor other than itself and 1.
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.
Suppose that the theorem holds for 2 < n < k for some k > 2.
Let's consider k + 1.

If kK + 1 is prime then it is already factored.

If kK + 1 is not prime then it has a divisor other than itself and 1.
Thus we can write k+1=mrwithl<m<r < k+1.
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for 2 < n < k for some k > 2.
Let's consider k + 1.

If kK + 1 is prime then it is already factored.

If kK + 1 is not prime then it has a divisor other than itself and 1.
Thus we can write k+1=mrwithl<m<r < k+1.

Since 2 < m < r < k our induction hypothesis implies that both m
and r can be factored into primes, say
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for 2 < n < k for some k > 2.
Let's consider k + 1.

If kK + 1 is prime then it is already factored.

If kK + 1 is not prime then it has a divisor other than itself and 1.
Thus we can write k+1=mrwithl<m<r < k+1.

Since 2 < m < r < k our induction hypothesis implies that both m
and r can be factored into primes, say

m:pl ..... pJ, r:ql ..... q’
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.
Suppose that the theorem holds for 2 < n < k for some k > 2.
Let's consider k + 1.

If kK + 1 is prime then it is already factored.

If kK + 1 is not prime then it has a divisor other than itself and 1.
Thus we can write k+1=mrwithl<m<r < k+1.

Since 2 < m < r < k our induction hypothesis implies that both m
and r can be factored into primes, say

m=pp----- P r=qp----- gi.

Then k+1=mr =

Kevin James MTHSC 412 Section 2.4 — Prime Factors and Greatest Commr



PROOF

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for 2 < n < k for some k > 2.
Let's consider k + 1.

If kK + 1 is prime then it is already factored.

If kK + 1 is not prime then it has a divisor other than itself and 1.
Thus we can write k+1=mrwithl<m<r < k+1.

Since 2 < m < r < k our induction hypothesis implies that both m
and r can be factored into primes, say

m:pl ..... pJ, r:ql ..... q’
Thenk+1=mr=p;----- pjqL- - g; is a prime factorization of
k+ 1.
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PROOF

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for 2 < n < k for some k > 2.
Let's consider k + 1.

If kK + 1 is prime then it is already factored.

If kK + 1 is not prime then it has a divisor other than itself and 1.
Thus we can write k+1=mrwithl<m<r < k+1.

Since 2 < m < r < k our induction hypothesis implies that both m
and r can be factored into primes, say

m=py----- pi,r=qi---- gi.
Thenk+1=mr=p;----- R g; is a prime factorization of
k+1.

It follows by strong induction than any n > 2 has a factorization
into primes.
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.
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Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.
= pP1...Pt=4q1...Gs
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.

= pP1...Pt=4q1...Gs

Thus p1/(g1 .. gs).
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.
= p1...Pt=0q1--.Gs

Thus p1/(q1 .. gs).
By our corollary, p1|g; for some 1 </ <s.
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.

= P1---Pt=4q1-..Gs

Thus p1/(q1 .. gs).

By our corollary, p1|g; for some 1 </ <s.

After relabeling the g;'s we may assume that p;|q;.
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.
= p1...Pt=0q1--.Gs

Thus p1/(q1 .. gs).
By our corollary, p1|g; for some 1 </ <s.

After relabeling the g;'s we may assume that p;|q;.
Since, g1 is prime, it follows that p; = g1 and we have
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.

= pP1...Pt=4q1...Gs

Thus p1/(q1 .. gs).

By our corollary, p1|g; for some 1 </ <s.

After relabeling the g;'s we may assume that p;|q;.

Since, g1 is prime, it follows that p; = g1 and we have

pP1...pt=Pp1q2...Q9s =
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.

= pP1...Pt=4q1...Gs

Thus p1/(q1 .. gs).

By our corollary, p1|g; for some 1 </ <s.

After relabeling the g;'s we may assume that p;|q;.

Since, g1 is prime, it follows that p; = g1 and we have

PL...pt=PpP1G2...Gs = P2...Ppt = Qq2...Gs.
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.

= P1---Pt=4q1-..Gs

Thus p1/(q1 .. gs).

By our corollary, p1|g; for some 1 </ <s.

After relabeling the g;'s we may assume that p;|q;.

Since, g1 is prime, it follows that p; = g1 and we have
PL...pt=PpP1G2...Gs = P2...Ppt = Qq2...Gs.

Repeating this argument, we see that after relabeling the g;'s, we
will have p; = g1,
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.

= P1---Pt=4q1-..Gs

Thus p1/(q1 .. gs).

By our corollary, p1|g; for some 1 </ <s.

After relabeling the g;'s we may assume that p;|q;.

Since, g1 is prime, it follows that p; = g1 and we have
PL...pt=PpP1G2...Gs = P2...Ppt = Qq2...Gs.

Repeating this argument, we see that after relabeling the g;'s, we
will have p1 = q1, p2 = g2,
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.

= pP1...Pt=4q1...Gs

Thus p1/(q1 .. gs).

By our corollary, p1|g; for some 1 </ <s.

After relabeling the g;'s we may assume that p;|q;.

Since, g1 is prime, it follows that p; = g1 and we have
PL...pt=PpP1G2...Gs = P2...Ppt = Qq2...Gs.

Repeating this argument, we see that after relabeling the g;'s, we
will have p1 = q1, p2 = q2,..., pt—-1 = Gt—1
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.

= pP1...Pt=4q1...Gs

Thus p1/(q1 .. gs).

By our corollary, p1|g; for some 1 </ <s.

After relabeling the g;'s we may assume that p;|q;.

Since, g1 is prime, it follows that p; = g1 and we have
PL...pt=PpP1G2...Gs = P2...Ppt = Qq2...Gs.

Repeating this argument, we see that after relabeling the g;'s, we
will have p1 = q1, p2 = g2,..., pt-1 = qt—1 and pt = gt ... gs.
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PROOF CONTINUED ...

Uniqueness: Suppose that we have two factorizations of n:
n=p;...ptand n=¢q;...qgs with t <s.
= p1...Pt=0q1--.Gs

Thus p1/(q1 .. gs).
By our corollary, p1|g; for some 1 </ <s.

After relabeling the g;'s we may assume that p;|q;.

Since, g1 is prime, it follows that p; = g1 and we have
PL...pt=PpP1G2...Gs = P2...Ppt = Qq2...Gs.

Repeating this argument, we see that after relabeling the g;'s, we
will have p1 = q1, p2 = g2,..., pt-1 = qt—1 and pt = gt ... gs.
Since p; is prime, it follows that there must be only one prime on
the right (i.e. s =t) and p: = g¢. O
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COROLLARY

If n > 2 then there are primes p1 < py < --- < px and positive
integers ey, . .., €x such that

& €,
n=p...pSk,

and this factorization is unique.
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N PRIMES?

THEOREM (EucLID’S THEOREM )

There are infinitely many primes.
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.
We will show that any finite list of primes is incomplete.

Suppose that p1, po, ..., pk is a list of primes.
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.
Suppose that p1, po, ..., pk is a list of primes.
Consider n = (p1p2...px) + 1.
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p1, po, ..., pk is a list of primes.

Consider n = (p1p2...px) + 1.

Now FTA guarantees us that n has at least one prime factor, say g.
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p1, po, ..., pk is a list of primes.

Consider n = (p1p2...px) + 1.

Now FTA guarantees us that n has at least one prime factor, say g.
If g|(p1...pk) then we would be able to write
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p1, po, ..., pk is a list of primes.

Consider n = (p1p2...px) + 1.

Now FTA guarantees us that n has at least one prime factor, say g.
If g|(p1...pk) then we would be able to write

(p1...px) = gm and n = gr for some m,r € Z,
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p1, po, ..., pk is a list of primes.

Consider n = (p1p2...px) + 1.

Now FTA guarantees us that n has at least one prime factor, say g.
If g|(p1...pk) then we would be able to write

(p1...pk) = qgm and n = gr for some m,r € Z, and

then we would have

l=n—(p1-..px) =qgm—qr=q(m—r) = q|1

which cannot be true.
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p1, po, ..., pk is a list of primes.

Consider n = (p1p2...px) + 1.

Now FTA guarantees us that n has at least one prime factor, say g.
If g|(p1...pk) then we would be able to write

(p1...pk) = qgm and n = gr for some m,r € Z, and

then we would have

l=n—(p1-..px) =qgm—qr=q(m—r) = q|1

which cannot be true.

Thus g f(p1 ... px),
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.
Suppose that p1, po, ..., pk is a list of primes.

Consider n = (p1p2...px) + 1.

Now FTA guarantees us that n has at least one prime factor, say g.
If g|(p1...pk) then we would be able to write

(p1...pk) = qgm and n = gr for some m,r € Z, and

then we would have

l=n—(p1-..px) =qgm—qr=q(m—r) = q|1

which cannot be true.

Thus g f(p1 ... pk), and we have found a prime g which was not
on our list.
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How MANY PRIMES?

THEOREM (EUCLID’S THEOREM )

There are infinitely many primes.

PROOF.

We will show that any finite list of primes is incomplete.

Suppose that p1, po, ..., pk is a list of primes.

Consider n = (p1p2...px) + 1.

Now FTA guarantees us that n has at least one prime factor, say g.
If g|(p1...pk) then we would be able to write

(p1...pk) = qgm and n = gr for some m,r € Z, and

then we would have

l=n—(p1-..px) =qgm—qr=q(m—r) = q|1

which cannot be true.

Thus g f(p1 ... pk), and we have found a prime g which was not
on our list.

Thus any finite list of primes is incomplete. O
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