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Greatest Common Divisor

Definition

Suppose that a, b ∈ Z. Then we say that d ∈ Z is a greatest
common divisor (gcd) of a and b if the following conditions are
satisfied.

1 d ≥ 0.

2 d |a and d |b.

3 If c |a and c |b then c|d .

Notation

If d is the gcd of a and b we may write (a, b) = d .

My Convention

It is sometimes useful to define (0, 0) = 0.
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Theorem

Let a, b ∈ Z with at least one of them nonzero. Then there exists
a unique gcd d of a and b. Moreover d can be realized as an
integral linear combination of a and b. That is, there are m, n ∈ Z
such that

d = am + bn.

Further, d is the smallest positive integer of this form.
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Proof

Suppose that a, b ∈ Z with at least one being nonzero.

Existence: First we note that if a = 0 then (a, b) = (0, b) = |b|
and
|b| = a · 0 + (±1) · b.
The case that b = 0 is similar. So, we now assume that a and b
are nonzero.
Let S = {ax + by | x , y ∈ Z; ax + by > 0}.
Note that either a or −a is in S . So, S 6= ∅.
Using the well ordering principle, let d be the least element of S .
Since, d ∈ S , there are x , y ∈ Z such that d = ax + by .
It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dq + r with 0 ≤ r < d .
Then r = a− dq = a− (ax + by)q = a(1− xq) + b(−yq).
However, r < d ⇒ r 6∈ S , (b/c d is the least element of S).
Thus r = 0 and d |a.
We can prove that d |b in a similar way.
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Proof continued ...

Finally suppose that c |a and c |b.

Then we have a = ck and b = cm for some k, m ∈ Z.
Thus d = ax + by = ckx + cmy = c(kx + my) and c|d .
So, d is the gcd of a and b.
Uniqueness: Suppose now that we have two gcd’s d and e.
Since d |a and d |b and since e is a gcd, d |e.
Since e|a and e|b and since d is a gcd, e|d .
So, d = ek and e = dm for some k, m ∈ Z.
⇒ d = dmk ⇒ mk = 1⇒ m, k = ±1.
So, d = ±e. However, e, d ≥ 0⇒ e = d .
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Computing the GCD

Fact

If a = bq + r then (a, b) = (b, r).

Exercise

Prove this!

Hint:

Show that any common divisor of a and b is also a divisor of r and
that any common divisor of b and r is a divisor of a.
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Euclidean Algorithm

Given a and b not both zero, first note that (a, b) = (|a|, |b|). So
we may replace a and b by |a| and |b| respectively.

Thus after rearrangement if necessary we can assume that a ≥ 0
and that b > 0.
Use the division algorithm to write

a = bq + r ; 0 ≤ r < b

Then recall that (a, b) = (b, r).
Now repeat the process with a replaced by b and b replaced by r .
Continue in this manner until you encounter a remainder of 0 and
note that (b, 0) = b.
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Example

Compute the (246, 180).

246 = 180(1) + 66⇒ (246, 180) = (180, 66).
180 = 66(2) + 48⇒ (180, 66) = (66, 48).
66 = 48(1) + 18⇒ (66, 48) = (48, 18).
48 = 18(2) + 12⇒ (48, 18) = (18, 12).
18 = 12(1) + 6⇒ (18, 12) = (12, 6).
12 = 6(2) + 0⇒ (12, 6) = (6, 0) = 6!
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Finding x and y

The Euclidean algorithm produces:

a = bq1 + r1

⇒ r1 = a− bq

b = r1q2 + r2

⇒ r2 = b − r1q2

r1 = r2q3 + r3

⇒ r3 = r1 − r2q3

r2 = r3q4 + r4

⇒ r4 = r2 − r3q4

...

...

ri−2 = ri−1qi + ri

⇒ ri = ri−2 − ri−1qi

...

...

rn−3 = rn−2qn−1 + rn−1

⇒ rn−1 = rn−3 − rn−2qn−1

rn−2 = rn−1qn + rn

⇒ rn = rn−2 − rn−1qn

rn−1 = rnqn+1 + 0

Note that (a, b) = rn and we can use successive back substitution
to write rn in terms of rk and rk−1 eventually expressing rn in
terms of a and b.
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Example

Let’s reconsider our previous example: (246, 180) = 6.

246 = 180(1) + 66 ⇒ 66 = 246 + (−1)180

180 = 66(2) + 48 ⇒ 48 = 180 + (−2)66

66 = 48(1) + 18 ⇒ 18 = 66 + (−1)48

48 = 18(2) + 12 ⇒ 12 = 48 + (−2)18

18 = 12(1) + 6 ⇒ 6 = 18 + (−1)12

12 = 6(2) + 0

Now write

6 = 18 + (−1)12 = 18 + (−1)[48 + (−2)18] = (3)18 + (−1)48

= (3)[66 + (−1)48] + (−1)48 = (3)66 + (−4)48

= (3)66 + (−4)[180 + (−2)66] = (11)66 + (−4)180

= (11)[246 + (−1)180] + (−4)180 = (11)246 + (−15)180.

So, take x = 11 and y = −15.
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66 = 48(1) + 18 ⇒ 18 = 66 + (−1)48

48 = 18(2) + 12 ⇒ 12 = 48 + (−2)18

18 = 12(1) + 6 ⇒ 6 = 18 + (−1)12

12 = 6(2) + 0

Now write

6 = 18 + (−1)12 = 18 + (−1)[48 + (−2)18] = (3)18 + (−1)48

= (3)[66 + (−1)48] + (−1)48 = (3)66 + (−4)48

= (3)66 + (−4)[180 + (−2)66] = (11)66 + (−4)180
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Relatively Prime Integers

Definition

Two integers a and b are relatively prime or coprime if (a, b) = 1.

Theorem

If a and b are coprime and a|bc then a|c.
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Proof.

Since a and b are coprime,

there are x , y ∈ Z such that
ax + by = 1.
Since a|bc there is k ∈ Z such that bc = ak. So,

1 = ax + by ⇒ c = acx + bcy

⇒ c = acx + aky (because bc = ak)

⇒ c = a(cx + ky)

⇒ a|c .
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Primes

Definition

An integer p is a prime if p > 1 and if the only positive divisors of
p are 1 and p.

Theorem (Euclid’s Lemma)

If p is a prime and p|ab then p|a or p|b.

Proof.

Suppose that p|ab. If p|a then the conclusion of the theorem holds.
Now, suppose that p 6 |a.
Then (a, p) = 1 because the only positive divisors of p are 1 and p.
Thus by our previous theorem, p|b.
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Corollary

1 If p|(a1a2 . . . an) then p|ai for some 1 ≤ i ≤ n.

2 If p|am then p|a.

Proof.

We will prove part 1 by induction on n.
The result is trivial when n = 1.
Now suppose that the result holds for n = k for some k ≥ 1.
Now, suppose that p|(a1a2 . . . ak+1) = (a1a2 . . . ak) · ak+1.
If p|ak+1 then the conclusion of the theorem holds.
If p 6 |ak+1 then by Euclid’s lemma, p|(a1a3 . . . ak).
In thisr case, our induction hypothesis implies that p|ai for
a ≤ i ≤ k and the conclusion of the theorem holds.
Part 2 follows from part 1.
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Unique Factorization

Theorem (Fundamental Theorem of Arithmetic)

Every integer n ≥ 2 can be expressed as a product of primes and
this factorization is unique up to rearrangement of the factors.
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Proof

Existence: Since 2 is prime, the theorem holds for n=2.

Suppose that the theorem holds for 2 ≤ n ≤ k for some k ≥ 2.
Let’s consider k + 1.
If k + 1 is prime then it is already factored.
If k + 1 is not prime then it has a divisor other than itself and 1.
Thus we can write k + 1 = mr with 1 < m ≤ r < k + 1.
Since 2 ≤ m ≤ r ≤ k our induction hypothesis implies that both m
and r can be factored into primes, say
m = p1 · · · · · pj , r = q1 · · · · · qi .
Then k + 1 = mr = p1 · · · · · pjq1 · · · · · qi is a prime factorization of
k + 1.
It follows by strong induction than any n ≥ 2 has a factorization
into primes.
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Proof continued ...

Uniqueness: Suppose that we have two factorizations of n:

n = p1 . . . pt and n = q1 . . . qs with t ≤ s.
⇒ p1 . . . pt = q1 . . . qs

Thus p1|(q1 . . . qs).
By our corollary, p1|qi for some 1 ≤ i ≤ s.
After relabeling the qi ’s we may assume that p1|q1.
Since, q1 is prime, it follows that p1 = q1 and we have
p1 . . . pt = p1q2 . . . qs ⇒ p2 . . . pt = q2 . . . qs .
Repeating this argument, we see that after relabeling the qi ’s, we
will have p1 = q1, p2 = q2,..., pt−1 = qt−1 and pt = qt . . . qs .
Since pt is prime, it follows that there must be only one prime on
the right (i.e. s = t) and pt = qt .
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Corollary

If n ≥ 2 then there are primes p1 < p2 < · · · < pk and positive
integers e1, . . . , ek such that

n = pe1
1 . . . pek

k ,

and this factorization is unique.
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How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.

Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.

Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.

Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.

If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write

(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z,

and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.

Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk),

and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.

Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor



How many primes?

Theorem (Euclid’s Theorem)

There are infinitely many primes.

Proof.

We will show that any finite list of primes is incomplete.
Suppose that p1, p2, . . . , pk is a list of primes.
Consider n = (p1p2 . . . pk) + 1.
Now FTA guarantees us that n has at least one prime factor, say q.
If q|(p1 . . . pk) then we would be able to write
(p1 . . . pk) = qm and n = qr for some m, r ∈ Z, and
then we would have
1 = n − (p1 . . . pk) = qm − qr = q(m − r)⇒ q|1
which cannot be true.
Thus q 6 |(p1 . . . pk), and we have found a prime q which was not
on our list.
Thus any finite list of primes is incomplete.

Kevin James MTHSC 412 Section 2.4 – Prime Factors and Greatest Common Divisor


