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CONGRUENCE MODULO n IS AN EQUIVALENCE
RELATION ON Z

Let n > 1. be an integer. For x,y € Z, we say that x is congruent
to y modulo n and write x = y (mod n) if n|(x — y).
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CONGRUENCE MODULO n IS AN EQUIVALENCE
RELATION ON Z

Let n > 1. be an integer. For x,y € Z, we say that x is congruent
to y modulo n and write x = y (mod n) if n|(x — y).

If n > 1 is an integer then = (mod n) is an equivalence relation
onZ .
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PROOF.

Let n > 1 be an integer.
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PROOF.

Let n > 1 be an integer.
Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.
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PROOF.

Let n > 1 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).
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PROOF.

Let n > 1 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x — y) = (x — y) = nk for some k € Z.
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PROOF.

Let n > 1 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x — y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y — x) and y = x (mod n).
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PROOF.

Let n > 1 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x — y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y — x) and y = x (mod n).
Thus = (mod n) is symmetric.
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PROOF.

Let n > 1 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x — y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y — x) and y = x (mod n).
Thus = (mod n) is symmetric.

Transitive: Suppose that x = y (mod n) and y = z (mod n)
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PROOF.

Let n > 1 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x — y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y — x) and y = x (mod n).
Thus = (mod n) is symmetric.

Transitive: Suppose that x = y (mod n) and y = z (mod n)
Then (x — y) = nk and (y — z) = nm for some k, m € Z.
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PROOF.

Let n > 1 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x — y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y — x) and y = x (mod n).
Thus = (mod n) is symmetric.

Transitive: Suppose that x = y (mod n) and y = z (mod n)
Then (x — y) = nk and (y — z) = nm for some k, m € Z.

So, (x—z)=(x—y)+(y —z) = n(k+ m) and n|(x — z).
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PROOF.

Let n > 1 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x — y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y — x) and y = x (mod n).
Thus = (mod n) is symmetric.

Transitive: Suppose that x = y (mod n) and y = z (mod n)
Then (x — y) = nk and (y — z) = nm for some k, m € Z.

So, (x—z)=(x—y)+(y —z) = n(k+ m) and n|(x — z).
Thus x = z (mod n) and = (mod n) is transitive.
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PROOF.

Let n > 1 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x — y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y — x) and y = x (mod n).
Thus = (mod n) is symmetric.

Transitive: Suppose that x =y (mod n) and y = z (mod n)
Then (x — y) = nk and (y — z) = nm for some k, m € Z.

So, (x—z)=(x—y)+(y —z) = n(k+ m) and n|(x — z).
Thus x = z (mod n) and = (mod n) is transitive.

Since = (mod n) is reflexive, symmetric and transitive, it is an
equivalence relation on 7Z . ]
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CONGRUENCE AND REMAINDERS

Suppose that n > 1 is an integer and that x,y € 7. x =y
(mod n) if and only if x and y yield the same remainder upon
division by n.
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CONGRUENCE AND REMAINDERS

Suppose that n > 1 is an integer and that x,y € Z. x =y
(mod n) if and only if x and y yield the same remainder upon
division by n.

PROOF.
Suppose that n > 1 is an integer and that x,y € Z with x > y.

4
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CONGRUENCE AND REMAINDERS

Suppose that n > 1 is an integer and that x,y € Z. x =y
(mod n) if and only if x and y yield the same remainder upon
division by n.

PROOF.
Suppose that n > 1 is an integer and that x,y € Z with x > y.
Using the division algorithm we can write

= nqi+n
y = nq@p+n

4
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CONGRUENCE AND REMAINDERS

Suppose that n > 1 is an integer and that x,y € Z. x =y
(mod n) if and only if x and y yield the same remainder upon
division by n.

PROOF.

Suppose that n > 1 is an integer and that x,y € Z with x > y.
Using the division algorithm we can write

X = nq+n
y = nq@p+n

Thus x —y = n(g1 — q2) + (rn — ) with —n < (rn — n) < n.

4
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CONGRUENCE AND REMAINDERS

Suppose that n > 1 is an integer and that x,y € Z. x =y
(mod n) if and only if x and y yield the same remainder upon
division by n.

PROOF.

Suppose that n > 1 is an integer and that x,y € Z with x > y.
Using the division algorithm we can write

X = nq+n

y = nq@p+n

Thus x —y = n(g1 — q2) + (rn — ) with —n < (rn — n) < n.
Now note that n|(x — y) if and only if n|(rn — r2).

4
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CONGRUENCE AND REMAINDERS

Suppose that n > 1 is an integer and that x,y € Z. x =y
(mod n) if and only if x and y yield the same remainder upon
division by n.

PROOF.

Suppose that n > 1 is an integer and that x,y € Z with x > y.
Using the division algorithm we can write

X = nq+n

y = nq@p+n

Thus x —y = n(g1 — q2) + (rn — ) with —n < (rn — n) < n.
Now note that n|(x — y) if and only if n|(rn — r2).

Finally since —n < (r1 — r2) < n, n|(rn — r2) if and only if

n = nm. L]

4
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CONGRUENCE CLASSES

We refer to the equivalence classes of = (mod n) as residue
classes or congruence classes.
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CONGRUENCE CLASSES

We refer to the equivalence classes of = (mod n) as residue
classes or congruence classes.

There are n distinct congruence classes modulo n.
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CONGRUENCE CLASSES

We refer to the equivalence classes of = (mod n) as residue
classes or congruence classes.

There are n distinct congruence classes modulo n.

PROOF.
Let x € Z.
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CONGRUENCE CLASSES

We refer to the equivalence classes of = (mod n) as residue
classes or congruence classes.

PROOF.

There are n distinct congruence classes modulo n.

Let x € Z. Use the division algorithm to write x = nq + r with
0<r<n.

Kevin James MTHSC 412 Section 2.5 —Congruence of Integers



CONGRUENCE CLASSES

We refer to the equivalence classes of = (mod n) as residue
classes or congruence classes.

There are n distinct congruence classes modulo n.

PROOF.

Let x € Z. Use the division algorithm to write x = nq + r with
0<r<n.

Since, x — r = ngq, x = r (mod n).

Kevin James MTHSC 412 Section 2.5 —Congruence of Integers



CONGRUENCE CLASSES

We refer to the equivalence classes of = (mod n) as residue
classes or congruence classes.

There are n distinct congruence classes modulo n.

PROOF.

Let x € Z. Use the division algorithm to write x = nq + r with
0<r<n

Since, x — r = ngq, x = r (mod n).

Thus each integer is in one of the congruence classes:

[0], [1],...[n —1].

Kevin James MTHSC 412 Section 2.5 —Congruence of Integers



CONGRUENCE CLASSES

We refer to the equivalence classes of = (mod n) as residue
classes or congruence classes.

There are n distinct congruence classes modulo n.

PROOF.

Let x € Z. Use the division algorithm to write x = nq + r with
0<r<n.

Since, x — r = ngq, x = r (mod n).

Thus each integer is in one of the congruence classes:

[0], [1],...[n —1].

The fact that these are distinct follows from our last fact. O

v
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ADDITION AND MULTIPLICATION PROPERTIES

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).
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ADDITION AND MULTIPLICATION PROPERTIES

THEOREM

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).

PROOF.

Suppose that a = b (mod n).
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ADDITION AND MULTIPLICATION PROPERTIES

THEOREM

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).

PROOF.

Suppose that a= b (mod n). Then (a — b) = nk for some k € Z.
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ADDITION AND MULTIPLICATION PROPERTIES

THEOREM

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).

PROOF.

Suppose that a= b (mod n). Then (a — b) = nk for some k € Z.
Thus (a+x) — (b+x) =a— b =nk
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ADDITION AND MULTIPLICATION PROPERTIES

THEOREM

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).

PROOF.

Suppose that a= b (mod n). Then (a — b) = nk for some k € Z.
Thus (a+x) — (b+ x) = a— b= nk and
ax — bx = x(a — b) = xnk and the result follows. O

y
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SUBSTITUTION

Suppose that a= b (mod n) and ¢ = d (mod n). Then

at+c=b+d (modn) and ac=bd (mod n).
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SUBSTITUTION

Suppose that a= b (mod n) and ¢ = d (mod n). Then

at+c=b+d (modn) and ac=bd (mod n).

PROOF.

By our previous theorem, we have
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SUBSTITUTION

Suppose that a= b (mod n) and ¢ = d (mod n). Then

at+c=b+d (modn) and ac=bd (mod n).

PROOF.

By our previous theorem, we have
a=b (mod n) = ac = bc (mod n), and

Kevin James MTHSC 412 Section 2.5 —Congruence of Integers



SUBSTITUTION

Suppose that a= b (mod n) and ¢ = d (mod n). Then

at+c=b+d (modn) and ac=bd (mod n).

PROOF.

By our previous theorem, we have
a=b (mod n) = ac = bc (mod n), and
¢ =d (mod n) = bc = bd (mod n).
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SUBSTITUTION

Suppose that a= b (mod n) and ¢ = d (mod n). Then

at+c=b+d (modn) and ac=bd (mod n).

PROOF.

By our previous theorem, we have

a=b (mod n) = ac = bc (mod n), and
c =d (mod n) = bc = bd (mod n).
Thus, ac = bc = bd (mod n).
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SUBSTITUTION

Suppose that a= b (mod n) and ¢ = d (mod n). Then

at+c=b+d (modn) and ac=bd (mod n).

PROOF.

By our previous theorem, we have

a=b (mod n) = ac = bc (mod n), and

c =d (mod n) = bc = bd (mod n).

Thus, ac = bc = bd (mod n).

The proof of the other congruence is similar and is left as an
exercise. []
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CANCELLATION LAW

If ax = ay (mod n) and (a,n) =1, then x = y (mod n).
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CANCELLATION LAW

If ax = ay (mod n) and (a,n) =1, then x = y (mod n).

PROOF.

ax =ay (mod n) = n|(ax — ay)
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CANCELLATION LAW

If ax = ay (mod n) and (a,n) =1, then x = y (mod n).

PROOF.

ax =ay (mod n) = n|(ax — ay)
= nla(x—y) and (a,n)=1
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CANCELLATION LAW

If ax = ay (mod n) and (a,n) =1, then x = y (mod n).

PROOF.

ax =ay (mod n) = n|(ax — ay)
= nla(x—y) and (a,n)=1
= nl(x—y)
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CANCELLATION LAW

If ax = ay (mod n) and (a,n) =1, then x = y (mod n).

ax = ay (mod n) n|(ax — ay)
nla(x—y) and (a,n)=1
n|(x —y)

=
=
=
= x=y (mod n)
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LINEAR CONGRUENCES

If (a, n) = 1, the congruence ax = b (mod n) has a solution x € Z
and the solution is unique modulo n, which means that any two
such solutions are congruent modulo n.
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PROOF.

Existence: Since (a,n) = 1, there are s, t € Z such that

l=as+tn =
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PROOF.

Existence: Since (a,n) = 1, there are s, t € Z such that

l=as+tn = b=asb+ tnb
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PROOF.

Existence: Since (a,n) = 1, there are s, t € Z such that

l=as+tn = b=asb+ tnb
= b — a(sb) = tbn
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PROOF.

Existence: Since (a,n) = 1, there are s, t € Z such that

l=as+tn = b=asb+tnb
= b — a(sb) = tbn
= b= a(sb) (mod n)

Kevin James MTHSC 412 Section 2.5 —Congruence of Integers



PROOF.

Existence: Since (a,n) = 1, there are s, t € Z such that

l=as+tn = b=asb+tnb
= b — a(sb) = tbn
= b= a(sb) (mod n)

Thus x = sb is a solution.
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PROOF.

Existence: Since (a,n) = 1, there are s, t € Z such that
l=as+tn = b=asb+tnb

= b — a(sb) = tbn
= b= a(sb) (mod n)

Thus x = sb is a solution.
Uniqueness modulo n: Suppose that x, y € Z are both solutions.
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PROOF.

Existence: Since (a,n) = 1, there are s, t € Z such that

l=as+tn = b=asb+tnb
= b — a(sb) = tbn
= b= a(sb) (mod n)

Thus x = sb is a solution.
Uniqueness modulo n: Suppose that x, y € Z are both solutions.
Then ax = b= ay (mod n) and (a,n) = 1.
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PROOF.

Existence: Since (a,n) = 1, there are s, t € Z such that

l=as+tn = b=asb+tnb
= b — a(sb) = tbn
= b= a(sb) (mod n)

Thus x = sb is a solution.

Uniqueness modulo n: Suppose that x, y € Z are both solutions.
Then ax = b= ay (mod n) and (a,n) = 1.

By the cancellation law, it follows that x = y (mod n). O
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Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.
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Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

PROOF.

Since a|c, we can write ¢ = ak for some k € Z.
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Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

PROOF.

Since a|c, we can write ¢ = ak for some k € Z.
So, we have b|c = b|ak and (b,a) =1
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Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

PRrOOF.

Since a|c, we can write ¢ = ak for some k € Z.
So, we have b|c = b|ak and (b,a) =1

which implies that b|k.
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Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

PRrOOF.

Since a|c, we can write ¢ = ak for some k € Z.
So, we have b|c = b|ak and (b,a) =1

which implies that b|k.

Thus, k = br for some r € Z.
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Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

PROOF.

Since a|c, we can write ¢ = ak for some k € Z.
So, we have b|c = b|ak and (b,a) =1

which implies that b|k.

Thus, k = br for some r € Z.

Then ¢ = ak = abr .
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Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

PROOF.

Since a|c, we can write ¢ = ak for some k € Z.

So, we have b|c = b|ak and (b,a) =1

which implies that b|k.

Thus, k = br for some r € Z.

Then ¢ = ak = abr .

Thus (ab)|c. O
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Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

Since a|c, we can write ¢ = ak for some k € Z.
So, we have b|c = b|ak and (b,a) =1

which implies that b|k.

Thus, k = br for some r € Z.

Then ¢ = ak = abr .

Thus (ab)|c. O

If n1,na, ..., ng is a set of pairwise coprime integers and if n;|c for
1<i<k, then (niny...ng)|c.
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CHINESE REMAINDER THEOREM

THEOREM

Let ny, no, ..., nk be pairwise coprime integers. Let a1, ...,ax € Z.
There is x € 7 satisfying the system of congruences

X

ap  (mod ny)

X

a» (mod ny)

x=ar (mod ng).

Furthermore, the solution is unique modulo (ninz ... ny).
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PROOF.

Existence: Let N = (nin...nx) and let

N
N,- = n; =ninp...Nj—1N0j41...Ngk.
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PROOF.

Existence: Let N = (nin...nx) and let

N
N,- =0 = nnp...Nnj—1N0j4+1...N0gk.

Then (N;, nj) = 1 because the n; are pairwise coprime.
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PROOF.

Existence: Let N = (nin...nx) and let

N,' = nﬂ, =ninp...Nj—1N0j41...Ngk.

Then (N;, nj) = 1 because the n; are pairwise coprime.
Let M; be a solution to Nix =1 (mod n;).
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PROOF.

Existence: Let N = (nin...nx) and let

N,' = nﬂ, =ninp...Nj—1N0j41...Ngk.

Then (N;, nj) = 1 because the n; are pairwise coprime.
Let M; be a solution to Nix =1 (mod n;).

0 (mod nj) if i #J,

1 (mod n;) '

Then N,'M,' =
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PROOF.

Existence: Let N = (nin...nx) and let

N; =N
1 n;

Then (N;, nj) = 1 because the n; are pairwise coprime.

Let M; be a solution to Nix =1 (mod n;).

0 (mod nj) if i #J,

1 (mod n;) '

Now let x = S5 | a;N;M;.

=ninp...Nj—1N0j41...Ngk.

Then N,'M,' =
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PROOF.

Existence: Let N = (nin...nx) and let

N = N
I n;

Then (N;, nj) = 1 because the n; are pairwise coprime.

Let M; be a solution to Nix =1 (mod n;).

0 (mod nj) if i #J,

1 (mod n;) '

Now let x = S5 | a;N;M;.

Then x = a;N;M; = a; (mod nj) for j =1,2,... k.

=ninp...Nj—1N0j41...Ngk.

Then N,'M,' = {
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PROOF.

Existence: Let N = (nin...nx) and let
N

N; = = nnp...Nnj—1N0j4+1...N0gk.

Then (IN,-, n;) = 1 because the n; are pairwise coprime.
Let M; be a solution to Nix =1 (mod n;).

0 (mod nj) if i #J,

1 (mod n;) '

Now let x = S5 | a;N;M;.

Then x = a;N;M; = a; (mod nj) for j =1,2,... k.
Thus x is a solution.

Then N,'M,' = {
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PROOF.

Existence: Let N = (nin...nx) and let

N; =N
) n;

Then (N;, nj) = 1 because the n; are pairwise coprime.

Let M; be a solution to Nix =1 (mod n;).

0 (mod nj) if i #J,

1 (mod n;) '

Now let x = S5 | a;N;M;.

Then x = a;N;M; = a; (mod nj) for j =1,2,... k.

Thus x is a solution.

Uniqueness: Suppose that x, y € Z are two solutions.

=ninp...Nj—1N0j41...Ngk.

Then N,'M,' = {
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