MTHSC 412 SECTION 2.5 –CONGRUENCE OF INTEGERS

Kevin James

Congruence modulo n is an equivalence relation on $\mathbb Z$

DEFINITION

Let n > 1. be an integer. For $x, y \in \mathbb{Z}$, we say that x is congruent to y modulo n and write $x \equiv y \pmod{n}$ if $n \mid (x - y)$.

Congruence modulo n is an equivalence relation on $\mathbb Z$

DEFINITION

Let n > 1. be an integer. For $x, y \in \mathbb{Z}$, we say that x is congruent to y modulo n and write $x \equiv y \pmod{n}$ if $n \mid (x - y)$.

THEOREM

If n>1 is an integer then $\equiv\pmod{n}$ is an equivalence relation on $\mathbb Z$.

Let n > 1 be an integer.

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x$

 $(\text{mod } n) \text{ and } \equiv (\text{mod } n) \text{ is reflexive.}$

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Transitive: Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Transitive: Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$

Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$.

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Transitive: Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$

Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$.

So, (x-z) = (x-y) + (y-z) = n(k+m) and n|(x-z).

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Transitive: Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$

Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$.

So, (x-z) = (x-y) + (y-z) = n(k+m) and n|(x-z).

Thus $x \equiv z \pmod{n}$ and $\equiv \pmod{n}$ is transitive.

Let n > 1 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Transitive: Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$

Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$.

So, (x-z) = (x-y) + (y-z) = n(k+m) and n|(x-z).

Thus $x \equiv z \pmod{n}$ and $\equiv \pmod{n}$ is transitive.

Since $\equiv \pmod{n}$ is reflexive, symmetric and transitive, it is an equivalence relation on $\mathbb Z$.

FACT

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$. $x \equiv y \pmod{n}$ if and only if x and y yield the same remainder upon division by n.

CONGRUENCE AND REMAINDERS

FACT

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$. $x \equiv y \pmod{n}$ if and only if x and y yield the same remainder upon division by n.

Proof.

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$ with $x \ge y$.

CONGRUENCE AND REMAINDERS

FACT

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$. $x \equiv y \pmod{n}$ if and only if x and y yield the same remainder upon division by n.

Proof.

Suppose that n>1 is an integer and that $x,y\in\mathbb{Z}$ with $x\geq y$. Using the division algorithm we can write

$$x = nq_1 + r_1$$

$$y = nq_2 + r_2$$

FACT

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$. $x \equiv y \pmod{n}$ if and only if x and y yield the same remainder upon division by n.

Proof.

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$ with $x \ge y$. Using the division algorithm we can write

$$x = nq_1 + r_1$$
$$y = nq_2 + r_2$$

Thus
$$x - y = n(q_1 - q_2) + (r_1 - r_2)$$
 with $-n < (r_1 - r_2) < n$.

FACT

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$. $x \equiv y \pmod{n}$ if and only if x and y yield the same remainder upon division by n.

Proof.

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$ with $x \ge y$. Using the division algorithm we can write

$$x = nq_1 + r_1$$
$$y = nq_2 + r_2$$

Thus $x - y = n(q_1 - q_2) + (r_1 - r_2)$ with $-n < (r_1 - r_2) < n$. Now note that n|(x - y) if and only if $n|(r_1 - r_2)$.

FACT

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$. $x \equiv y \pmod{n}$ if and only if x and y yield the same remainder upon division by n.

Proof.

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$ with $x \geq y$. Using the division algorithm we can write

$$x = nq_1 + r_1$$
$$y = nq_2 + r_2$$

Thus $x - y = n(q_1 - q_2) + (r_1 - r_2)$ with $-n < (r_1 - r_2) < n$. Now note that n|(x - y) if and only if $n|(r_1 - r_2)$. Finally since $-n < (r_1 - r_2) < n$, $n|(r_1 - r_2)$ if and only if $r_1 = r_2$.

DEFINITION

We refer to the equivalence classes of $\equiv \pmod{n}$ as residue classes or congruence classes.

DEFINITION

We refer to the equivalence classes of $\equiv \pmod{n}$ as residue classes or congruence classes.

FACT

There are n distinct congruence classes modulo n.

DEFINITION

We refer to the equivalence classes of $\equiv \pmod{n}$ as residue classes or congruence classes.

FACT

There are n distinct congruence classes modulo n.

Proof.

Let $x \in \mathbb{Z}$.

Definition

We refer to the equivalence classes of $\equiv \pmod{n}$ as residue classes or congruence classes.

FACT

There are n distinct congruence classes modulo n.

Proof.

Let $x \in \mathbb{Z}$. Use the division algorithm to write x = nq + r with $0 \le r < n$.

DEFINITION

We refer to the equivalence classes of $\equiv \pmod{n}$ as residue classes or congruence classes.

FACT

There are n distinct congruence classes modulo n.

Proof.

Let $x \in \mathbb{Z}$. Use the division algorithm to write x = nq + r with $0 \le r \le n$.

Since,
$$x - r = nq$$
, $x \equiv r \pmod{n}$.

DEFINITION

We refer to the equivalence classes of $\equiv \pmod{n}$ as residue classes or congruence classes.

FACT

There are n distinct congruence classes modulo n.

Proof.

Let $x \in \mathbb{Z}$. Use the division algorithm to write x = nq + r with $0 \le r \le n$.

Since, x - r = nq, $x \equiv r \pmod{n}$.

Thus each integer is in one of the congruence classes:

$$[0], [1], \ldots [n-1].$$

DEFINITION

We refer to the equivalence classes of $\equiv \pmod{n}$ as residue classes or congruence classes.

FACT

There are n distinct congruence classes modulo n.

Proof.

Let $x \in \mathbb{Z}$. Use the division algorithm to write x = nq + r with $0 \le r < n$.

Since, x - r = nq, $x \equiv r \pmod{n}$.

Thus each integer is in one of the congruence classes:

$$[0], [1], \ldots [n-1].$$

The fact that these are distinct follows from our last fact.

THEOREM

If
$$a \equiv b \pmod{n}$$
 and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

THEOREM

If $a \equiv b \pmod{n}$ and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$.

THEOREM

If $a \equiv b \pmod{n}$ and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$. Then (a - b) = nk for some $k \in \mathbb{Z}$.

THEOREM

If $a \equiv b \pmod{n}$ and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$. Then (a - b) = nk for some $k \in \mathbb{Z}$. Thus (a + x) - (b + x) = a - b = nk

Theorem

If
$$a \equiv b \pmod{n}$$
 and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

Proof.

Suppose that
$$a \equiv b \pmod{n}$$
. Then $(a - b) = nk$ for some $k \in \mathbb{Z}$. Thus $(a + x) - (b + x) = a - b = nk$ and $ax - bx = x(a - b) = xnk$ and the result follows.

Substitution

THEOREM

Suppose that
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Substitution

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

By our previous theorem, we have

Substitution

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

By our previous theorem, we have

$$a \equiv b \pmod{n} \Rightarrow ac \equiv bc \pmod{n}$$
, and

SUBSTITUTION

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

By our previous theorem, we have

 $a \equiv b \pmod{n} \Rightarrow ac \equiv bc \pmod{n}$, and

 $c \equiv d \pmod{n} \Rightarrow bc \equiv bd \pmod{n}$.

Substitution

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

By our previous theorem, we have

 $a \equiv b \pmod{n} \Rightarrow ac \equiv bc \pmod{n}$, and

 $c \equiv d \pmod{n} \Rightarrow bc \equiv bd \pmod{n}$.

Thus, $ac \equiv bc \equiv bd \pmod{n}$.

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

By our previous theorem, we have

$$a \equiv b \pmod{n} \Rightarrow ac \equiv bc \pmod{n}$$
, and

$$c \equiv d \pmod{n} \Rightarrow bc \equiv bd \pmod{n}$$
.

Thus,
$$ac \equiv bc \equiv bd \pmod{n}$$
.

The proof of the other congruence is similar and is left as an exercise.

THEOREM

If $ax \equiv ay \pmod{n}$ and (a, n) = 1, then $x \equiv y \pmod{n}$.

THEOREM

If $ax \equiv ay \pmod{n}$ and (a, n) = 1, then $x \equiv y \pmod{n}$.

$$ax \equiv ay \pmod{n} \Rightarrow n|(ax - ay)$$

THEOREM

If $ax \equiv ay \pmod{n}$ and (a, n) = 1, then $x \equiv y \pmod{n}$.

$$ax \equiv ay \pmod{n} \Rightarrow n|(ax - ay)$$

 $\Rightarrow n|a(x - y) \text{ and } (a, n) = 1$

THEOREM

If $ax \equiv ay \pmod{n}$ and (a, n) = 1, then $x \equiv y \pmod{n}$.

$$ax \equiv ay \pmod{n} \Rightarrow n|(ax - ay)$$

 $\Rightarrow n|a(x - y) \text{ and } (a, n) = 1$
 $\Rightarrow n|(x - y)$

THEOREM

If $ax \equiv ay \pmod{n}$ and (a, n) = 1, then $x \equiv y \pmod{n}$.

$$ax \equiv ay \pmod{n} \Rightarrow n | (ax - ay)$$

 $\Rightarrow n | a(x - y) \text{ and } (a, n) = 1$
 $\Rightarrow n | (x - y)$
 $\Rightarrow x \equiv y \pmod{n}$

LINEAR CONGRUENCES

THEOREM

If (a, n) = 1, the congruence $ax \equiv b \pmod{n}$ has a solution $x \in \mathbb{Z}$ and the solution is unique modulo n, which means that any two such solutions are congruent modulo n.

$$1 = as + tn \Rightarrow$$

$$1 = as + tn \Rightarrow b = asb + tnb$$

$$1 = as + tn \Rightarrow b = asb + tnb$$

 $\Rightarrow b - a(sb) = tbn$

$$1 = as + tn \Rightarrow b = asb + tnb$$
$$\Rightarrow b - a(sb) = tbn$$
$$\Rightarrow b \equiv a(sb) \pmod{n}$$

Existence: Since (a, n) = 1, there are $s, t \in \mathbb{Z}$ such that

$$1 = as + tn \Rightarrow b = asb + tnb$$
$$\Rightarrow b - a(sb) = tbn$$
$$\Rightarrow b \equiv a(sb) \pmod{n}$$

Thus x = sb is a solution.

Existence: Since (a, n) = 1, there are $s, t \in \mathbb{Z}$ such that

$$1 = as + tn \Rightarrow b = asb + tnb$$
$$\Rightarrow b - a(sb) = tbn$$
$$\Rightarrow b \equiv a(sb) \pmod{n}$$

Thus x = sb is a solution.

Uniqueness modulo n: Suppose that $x, y \in \mathbb{Z}$ are both solutions.

Existence: Since (a, n) = 1, there are $s, t \in \mathbb{Z}$ such that

$$1 = as + tn \Rightarrow b = asb + tnb$$
$$\Rightarrow b - a(sb) = tbn$$
$$\Rightarrow b \equiv a(sb) \pmod{n}$$

Thus x = sb is a solution.

Uniqueness modulo n: Suppose that $x, y \in \mathbb{Z}$ are both solutions.

Then $ax \equiv b \equiv ay \pmod{n}$ and (a, n) = 1.

Existence: Since (a, n) = 1, there are $s, t \in \mathbb{Z}$ such that

$$1 = as + tn \Rightarrow b = asb + tnb$$
$$\Rightarrow b - a(sb) = tbn$$
$$\Rightarrow b \equiv a(sb) \pmod{n}$$

Thus x = sb is a solution.

Uniqueness modulo n: Suppose that $x, y \in \mathbb{Z}$ are both solutions.

Then $ax \equiv b \equiv ay \pmod{n}$ and (a, n) = 1.

By the cancellation law, it follows that $x \equiv y \pmod{n}$.

Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

Proof.

Since a|c, we can write c = ak for some $k \in \mathbb{Z}$.

Suppose that a|c and b|c with (a, b) = 1. Then (ab)|c.

Proof.

Since a|c, we can write c = ak for some $k \in \mathbb{Z}$.

So, we have $b|c \Rightarrow b|ak$ and (b, a) = 1

Suppose that a|c and b|c with (a, b) = 1. Then (ab)|c.

Proof.

Since a|c, we can write c=ak for some $k\in\mathbb{Z}$. So, we have $b|c\Rightarrow b|ak$ and (b,a)=1 which implies that b|k.

Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

Proof.

Since a|c, we can write c = ak for some $k \in \mathbb{Z}$.

So, we have $b|c \Rightarrow b|ak$ and (b, a) = 1 which implies that b|k.

Thus, k = br for some $r \in \mathbb{Z}$.

Suppose that a|c and b|c with (a, b) = 1. Then (ab)|c.

Proof.

Since a|c, we can write c = ak for some $k \in \mathbb{Z}$.

So, we have $b|c \Rightarrow b|ak$ and (b, a) = 1 which implies that b|k.

Thus, k = br for some $r \in \mathbb{Z}$.

Then c = ak = abr.

Suppose that a|c and b|c with (a,b) = 1. Then (ab)|c.

Proof.

Since a|c, we can write c = ak for some $k \in \mathbb{Z}$.

So, we have $b|c \Rightarrow b|ak$ and (b, a) = 1 which implies that b|k.

Thus, k = br for some $r \in \mathbb{Z}$.

Then c = ak = abr.

Thus (ab)|c.

Suppose that a|c and b|c with (a, b) = 1. Then (ab)|c.

Proof.

Since a|c, we can write c = ak for some $k \in \mathbb{Z}$.

So, we have $b|c \Rightarrow b|ak$ and (b, a) = 1 which implies that b|k.

Thus, k = br for some $r \in \mathbb{Z}$.

Then c = ak = abr.

Thus (ab)|c.

COROLLARY

If $n_1, n_2, ..., n_k$ is a set of pairwise coprime integers and if $n_i | c$ for $1 \le i \le k$, then $(n_1 n_2 ... n_k) | c$.

CHINESE REMAINDER THEOREM

THEOREM

Let n_1, n_2, \ldots, n_k be pairwise coprime integers. Let $a_1, \ldots, a_k \in \mathbb{Z}$. There is $x \in \mathbb{Z}$ satisfying the system of congruences

$$\begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \\ \vdots \\ x \equiv a_k \pmod{n_k}. \end{cases}$$

Furthermore, the solution is unique modulo $(n_1 n_2 ... n_k)$.

Existence: Let $N = (n_1 n_2 \dots n_k)$ and let

$$N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$$

Existence: Let $N = (n_1 n_2 \dots n_k)$ and let

$$N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$$

Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime.

Existence: Let $N = (n_1 n_2 \dots n_k)$ and let

$$N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$$

Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime.

Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$.

Existence: Let $N = (n_1 n_2 \dots n_k)$ and let

$$N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$$

Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime.

Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$.

Then
$$N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$$
.

Existence: Let $N = (n_1 n_2 \dots n_k)$ and let $N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k$ Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime. Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$.

Then
$$N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$$

Now let $x = \sum_{i=1}^k a_i N_i M_i$.

Now let
$$x = \sum_{i=1}^{k} a_i N_i M_i$$
.

Existence: Let
$$N = (n_1 n_2 \dots n_k)$$
 and let $N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k$. Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime. Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$. Then $N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$. Now let $x = \sum_{i=1}^k a_i N_i M_i$.

Then $x \equiv a_i N_i M_i \equiv a_i \pmod{n_i}$ for j = 1, 2, ..., k.

Existence: Let
$$N = (n_1 n_2 \dots n_k)$$
 and let $N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k$. Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime. Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$. Then $N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$.

Now let
$$x = \sum_{i=1}^{k} a_i N_i M_i$$

Now let
$$x = \sum_{i=1}^{k} a_i N_i M_i$$
.

Then
$$x \equiv a_j N_j M_j \equiv a_j \pmod{n_j}$$
 for $j = 1, 2, ..., k$.

Thus x is a solution.

Existence: Let
$$N = (n_1 n_2 \dots n_k)$$
 and let

$$N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$$

Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime.

Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$.

Then
$$N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$$
.

Now let
$$x = \sum_{i=1}^k a_i N_i M_i$$
.

Then
$$x \equiv a_j N_j M_j \equiv a_j \pmod{n_j}$$
 for $j = 1, 2, ..., k$.

Thus x is a solution.

Uniqueness: Suppose that $x, y \in \mathbb{Z}$ are two solutions.

Existence: Let $N = (n_1 n_2 \dots n_k)$ and let

$$N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$$

Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime.

Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$.

Then
$$N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$$
.

Now let $x = \sum_{i=1}^{k} a_i N_i M_i$.

Then $x \equiv a_j N_j M_j \equiv a_j \pmod{n_j}$ for j = 1, 2, ..., k.

Thus x is a solution.

Uniqueness: Suppose that $x, y \in \mathbb{Z}$ are two solutions.

Then $x \equiv y \pmod{n_i}$ for i = 1, 2, ..., k.

Existence: Let
$$N = (n_1 n_2 \dots n_k)$$
 and let

$$N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$$

Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime.

Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$.

Then
$$N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$$
.

Now let
$$x = \sum_{i=1}^{k} a_i N_i M_i$$
.

Then
$$x \equiv a_j N_j M_j \equiv a_j \pmod{n_j}$$
 for $j = 1, 2, ..., k$.

Thus x is a solution.

Uniqueness: Suppose that $x, y \in \mathbb{Z}$ are two solutions.

Then
$$x \equiv y \pmod{n_i}$$
 for $i = 1, 2, ..., k$.

Thus
$$n_i | (x - y)$$
 for $i = 1, 2, ..., k$.

Existence: Let
$$N = (n_1 n_2 \dots n_k)$$
 and let

$$N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$$

Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime.

Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$.

Then
$$N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$$
.

Now let
$$x = \sum_{i=1}^{k} a_i N_i M_i$$
.

Then
$$x \equiv a_j N_j M_j \equiv a_j \pmod{n_j}$$
 for $j = 1, 2, ..., k$.

Thus x is a solution.

Uniqueness: Suppose that $x, y \in \mathbb{Z}$ are two solutions.

Then
$$x \equiv y \pmod{n_i}$$
 for $i = 1, 2, ..., k$.

Thus
$$n_i|(x - y)$$
 for $i = 1, 2, ..., k$.

Since the n_i 's are pairwise coprime, this implies that

$$(n_1n_2\ldots n_k)|(x-y).$$

Existence: Let $N = (n_1 n_2 \dots n_k)$ and let

$$N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$$

Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime.

Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$.

Then
$$N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$$
.

Now let $x = \sum_{i=1}^{k} a_i N_i M_i$.

Then $x \equiv a_j N_j M_j \equiv a_j \pmod{n_j}$ for j = 1, 2, ..., k.

Thus x is a solution.

Uniqueness: Suppose that $x, y \in \mathbb{Z}$ are two solutions.

Then
$$x \equiv y \pmod{n_i}$$
 for $i = 1, 2, ..., k$.

Thus
$$n_i|(x - y)$$
 for $i = 1, 2, ..., k$.

Since the n_i 's are pairwise coprime, this implies that

$$(n_1n_2\ldots n_k)|(x-y).$$

Thus $x \equiv y \pmod{N}$ as desired.

