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Congruence modulo n is an equivalence
relation on Z

Definition

Let n > 1. be an integer. For x , y ∈ Z, we say that x is congruent
to y modulo n and write x ≡ y (mod n) if n|(x − y).

Theorem

If n > 1 is an integer then ≡ (mod n) is an equivalence relation
on Z .
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Proof.

Let n > 1 be an integer.

Reflexive: For x ∈ Z, x − x = 0 which divisible by n. So, x ≡ x
(mod n) and ≡ (mod n) is reflexive.
Symmetric: Suppose that x ≡ y (mod n).
Then n|(x − y)⇒ (x − y) = nk for some k ∈ Z.
So, (y − x) = n(−k). Thus, n|(y − x) and y ≡ x (mod n).
Thus ≡ (mod n) is symmetric.
Transitive: Suppose that x ≡ y (mod n) and y ≡ z (mod n)
Then (x − y) = nk and (y − z) = nm for some k, m ∈ Z.
So, (x − z) = (x − y) + (y − z) = n(k + m) and n|(x − z).
Thus x ≡ z (mod n) and ≡ (mod n) is transitive.
Since ≡ (mod n) is reflexive, symmetric and transitive, it is an
equivalence relation on Z .
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Congruence and Remainders

Fact

Suppose that n > 1 is an integer and that x , y ∈ Z. x ≡ y
(mod n) if and only if x and y yield the same remainder upon
division by n.

Proof.

Suppose that n > 1 is an integer and that x , y ∈ Z with x ≥ y .
Using the division algorithm we can write

x = nq1 + r1

y = nq2 + r2

Thus x − y = n(q1 − q2) + (r1 − r2) with −n < (r1 − r2) < n.
Now note that n|(x − y) if and only if n|(r1 − r2).
Finally since −n < (r1 − r2) < n, n|(r1 − r2) if and only if
r1 = r2.
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Congruence Classes

Definition

We refer to the equivalence classes of ≡ (mod n) as residue
classes or congruence classes.

Fact

There are n distinct congruence classes modulo n.

Proof.

Let x ∈ Z. Use the division algorithm to write x = nq + r with
0 ≤ r < n.
Since, x − r = nq, x ≡ r (mod n).
Thus each integer is in one of the congruence classes:
[0], [1], . . . [n − 1].
The fact that these are distinct follows from our last fact.
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Addition and Multiplication Properties

Theorem

If a ≡ b (mod n) and x ∈ Z then

a + x ≡ b + x (mod n) and ax ≡ bx (mod n).

Proof.

Suppose that a ≡ b (mod n). Then (a− b) = nk for some k ∈ Z.
Thus (a + x)− (b + x) = a− b = nk and
ax − bx = x(a− b) = xnk and the result follows.
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Substitution

Theorem

Suppose that a ≡ b (mod n) and c ≡ d (mod n). Then

a + c ≡ b + d (mod n) and ac ≡ bd (mod n).

Proof.

By our previous theorem, we have
a ≡ b (mod n)⇒ ac ≡ bc (mod n), and
c ≡ d (mod n)⇒ bc ≡ bd (mod n).
Thus, ac ≡ bc ≡ bd (mod n).
The proof of the other congruence is similar and is left as an
exercise.
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Cancellation law

Theorem

If ax ≡ ay (mod n) and (a, n) = 1, then x ≡ y (mod n).

Proof.

ax ≡ ay (mod n) ⇒ n|(ax − ay)

⇒ n|a(x − y) and (a, n) = 1

⇒ n|(x − y)

⇒ x ≡ y (mod n)
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Linear Congruences

Theorem

If (a, n) = 1, the congruence ax ≡ b (mod n) has a solution x ∈ Z
and the solution is unique modulo n, which means that any two
such solutions are congruent modulo n.
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Proof.

Existence: Since (a, n) = 1, there are s, t ∈ Z such that

1 = as + tn ⇒

b = asb + tnb

⇒ b − a(sb) = tbn

⇒ b ≡ a(sb) (mod n)

Thus x = sb is a solution.
Uniqueness modulo n: Suppose that x , y ∈ Z are both solutions.
Then ax ≡ b ≡ ay (mod n) and (a, n) = 1.
By the cancellation law, it follows that x ≡ y (mod n).
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Fact

Suppose that a|c and b|c with (a, b) = 1. Then (ab)|c.

Proof.

Since a|c , we can write c = ak for some k ∈ Z.
So, we have b|c ⇒ b|ak and (b, a) = 1
which implies that b|k.
Thus, k = br for some r ∈ Z.
Then c = ak = abr .
Thus (ab)|c .

Corollary

If n1, n2, . . . , nk is a set of pairwise coprime integers and if ni |c for
1 ≤ i ≤ k, then (n1n2 . . . nk)|c.
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Chinese Remainder Theorem

Theorem

Let n1, n2, . . . , nk be pairwise coprime integers. Let a1, . . . , ak ∈ Z.
There is x ∈ Z satisfying the system of congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...

x ≡ ak (mod nk).

Furthermore, the solution is unique modulo (n1n2 . . . nk).
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Proof.

Existence: Let N = (n1n2 . . . nk) and let
Ni = N

ni
= n1n2 . . . ni−1ni+1 . . . nk .

Then (Ni , ni ) = 1 because the ni are pairwise coprime.
Let Mi be a solution to Nix ≡ 1 (mod ni ).

Then NiMi ≡

{
0 (mod nj) if i 6= j ,

1 (mod ni )
.

Now let x =
∑k

i=1 aiNiMi .
Then x ≡ ajNjMj ≡ aj (mod nj) for j = 1, 2, . . . , k .
Thus x is a solution.
Uniqueness: Suppose that x , y ∈ Z are two solutions.
Then x ≡ y (mod ni ) for i = 1, 2, . . . , k .
Thus ni |(x − y) for i = 1, 2, . . . , k .
Since the ni ’s are pairwise coprime, this implies that
(n1n2 . . . nk)|(x − y).
Thus x ≡ y (mod N) as desired.
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