MTHSC 412 Section 2.5 –Congruence of Integers

Kevin James

Kevin James MTHSC 412 Section 2.5 –Congruence of Integers

白 ト く ヨ ト く ヨ ト

3

Congruence modulo n is an equivalence relation on \mathbb{Z}

DEFINITION

Let n > 1. be an integer. For $x, y \in \mathbb{Z}$, we say that x is congruent to y modulo n and write $x \equiv y \pmod{n}$ if n|(x - y).

Theorem

If n > 1 is an integer then $\equiv \pmod{n}$ is an equivalence relation on $\mathbb Z$.

・ 同・ ・ ヨ・

Proof.

Let n > 1 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by *n*. So, $x \equiv x$ (mod n) and \equiv (mod n) is reflexive. **Symmetric:** Suppose that $x \equiv y \pmod{n}$. Then $n|(x - y) \Rightarrow (x - y) = nk$ for some $k \in \mathbb{Z}$. So. (y - x) = n(-k). Thus, n|(y - x) and $y \equiv x \pmod{n}$. Thus $\equiv \pmod{n}$ is symmetric. **Transitive:** Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$ Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$. So, (x - z) = (x - y) + (y - z) = n(k + m) and n|(x - z). Thus $x \equiv z \pmod{n}$ and $\equiv \pmod{n}$ is transitive. Since $\equiv \pmod{n}$ is reflexive, symmetric and transitive, it is an equivalence relation on $\mathbb Z$.

(ロ) (同) (E) (E) (E)

Fact

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$. $x \equiv y \pmod{n}$ if and only if x and y yield the same remainder upon division by n.

Proof.

Suppose that n > 1 is an integer and that $x, y \in \mathbb{Z}$ with $x \ge y$. Using the division algorithm we can write

 $\begin{array}{rcl} x & = & nq_1 + r_1 \\ y & = & nq_2 + r_2 \end{array}$

Thus $x - y = n(q_1 - q_2) + (r_1 - r_2)$ with $-n < (r_1 - r_2) < n$. Now note that n|(x - y) if and only if $n|(r_1 - r_2)$. Finally since $-n < (r_1 - r_2) < n$, $n|(r_1 - r_2)$ if and only if $r_1 = r_2$.

CONGRUENCE CLASSES

(4月) (4日) (4日)

Definition

We refer to the equivalence classes of $\equiv \pmod{n}$ as residue classes or congruence classes.

Fact

There are n distinct congruence classes modulo n.

Proof.

Let $x \in \mathbb{Z}$. Use the division algorithm to write x = nq + r with $0 \le r < n$. Since, x - r = nq, $x \equiv r \pmod{n}$. Thus each integer is in one of the congruence classes: $[0], [1], \dots [n-1]$. The fact that these are distinct follows from our last fact.

Addition and Multiplication Properties

Theorem

If $a \equiv b \pmod{n}$ and $x \in \mathbb{Z}$ then

 $a + x \equiv b + x \pmod{n}$ and $ax \equiv bx \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$. Then (a - b) = nk for some $k \in \mathbb{Z}$. Thus (a + x) - (b + x) = a - b = nk and ax - bx = x(a - b) = xnk and the result follows.

(4月) イヨト イヨト

Theorem

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

 $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.

Proof.

By our previous theorem, we have $a \equiv b \pmod{n} \Rightarrow ac \equiv bc \pmod{n}$, and $c \equiv d \pmod{n} \Rightarrow bc \equiv bd \pmod{n}$. Thus, $ac \equiv bc \equiv bd \pmod{n}$. The proof of the other congruence is similar and is left as an exercise.

- 4 同 2 4 日 2 4 日 2

CANCELLATION LAW

THEOREM

If
$$ax \equiv ay \pmod{n}$$
 and $(a, n) = 1$, then $x \equiv y \pmod{n}$.

Proof.

$$ax \equiv ay \pmod{n} \implies n|(ax - ay)$$

$$\implies n|a(x - y) \text{ and } (a, n) = 1$$

$$\implies n|(x - y)$$

$$\implies x \equiv y \pmod{n}$$

・ロン ・回 と ・ ヨン ・ ヨン

Э

LINEAR CONGRUENCES

Theorem

If (a, n) = 1, the congruence $ax \equiv b \pmod{n}$ has a solution $x \in \mathbb{Z}$ and the solution is unique modulo n, which means that any two such solutions are congruent modulo n.

Proof.

Existence: Since (a, n) = 1, there are $s, t \in \mathbb{Z}$ such that

$$1 = as + tn \implies b = asb + tnb$$
$$\implies b - a(sb) = tbn$$
$$\implies b \equiv a(sb) \pmod{n}$$

Thus x = sb is a solution.

Uniqueness modulo *n*: Suppose that $x, y \in \mathbb{Z}$ are both solutions. Then $ax \equiv b \equiv ay \pmod{n}$ and (a, n) = 1. By the cancellation law, it follows that $x \equiv y \pmod{n}$.

Fact

Suppose that a|c and b|c with (a, b) = 1. Then (ab)|c.

Proof.

Since a|c, we can write c = ak for some $k \in \mathbb{Z}$. So, we have $b|c \Rightarrow b|ak$ and (b, a) = 1which implies that b|k. Thus, k = br for some $r \in \mathbb{Z}$. Then c = ak = abr. Thus (ab)|c.

COROLLARY

If n_1, n_2, \ldots, n_k is a set of pairwise coprime integers and if $n_i | c$ for $1 \le i \le k$, then $(n_1 n_2 \ldots n_k) | c$.

- 4 同 2 4 日 2 4 日 2

CHINESE REMAINDER THEOREM

Theorem

Let n_1, n_2, \ldots, n_k be pairwise coprime integers. Let $a_1, \ldots, a_k \in \mathbb{Z}$. There is $x \in \mathbb{Z}$ satisfying the system of congruences

$$\begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \\ \vdots \\ x \equiv a_k \pmod{n_k}. \end{cases}$$

Furthermore, the solution is unique modulo $(n_1 n_2 \dots n_k)$.

向下 イヨト イヨト

Proof.

Existence: Let $N = (n_1 n_2 \dots n_k)$ and let $N_i = \frac{N}{n_i} = n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k.$ Then $(N_i, n_i) = 1$ because the n_i are pairwise coprime. Let M_i be a solution to $N_i x \equiv 1 \pmod{n_i}$. Then $N_i M_i \equiv \begin{cases} 0 \pmod{n_j} & \text{if } i \neq j, \\ 1 \pmod{n_i} \end{cases}$. Now let $x = \sum_{i=1}^{k} a_i N_i M_i$. Then $x \equiv a_i N_i M_i \equiv a_i \pmod{n_i}$ for $j = 1, 2, \dots, k$. Thus x is a solution. **Uniqueness:** Suppose that $x, y \in \mathbb{Z}$ are two solutions. Then $x \equiv y \pmod{n_i}$ for $i = 1, 2, \dots, k$. Thus $n_i | (x - y)$ for i = 1, 2, ..., k. Since the n_i 's are pairwise coprime, this implies that $(n_1 n_2 \dots n_k) | (x - y).$ Thus $x \equiv y \pmod{N}$ as desired.

イロト イヨト イヨト イヨト

3