MTHSC 412 SECTION 2.6 -CONGRUENCE CLASSES

Kevin James

DEFINITION

Given an integer n > 1 we denote the set of congruence classes modulo n as

$$\mathbb{Z}_n = \{[0], [1], \ldots, [n-1]\}.$$

DEFINITION

Given an integer n > 1 we denote the set of congruence classes modulo n as

$$\mathbb{Z}_n = \{[0], [1], \ldots, [n-1]\}.$$

Note

It is also common to omit the brackets and simply write

$$\mathbb{Z}_n = \{0, 1, \dots, n-1\}.$$

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Proof.

First, suppose that [a] = [b].

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Proof.

First, suppose that [a] = [b].

Then, we have $a \in [a] = [b] \Rightarrow a \equiv b \pmod{n}$.

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Proof.

First, suppose that [a] = [b].

Then, we have $a \in [a] = [b] \Rightarrow a \equiv b \pmod{n}$.

Now suppose that $a \equiv b \pmod{n}$.

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Proof.

First, suppose that [a] = [b].

Then, we have $a \in [a] = [b] \Rightarrow a \equiv b \pmod{n}$.

Now suppose that $a \equiv b \pmod{n}$.

$$x \in [a] \Rightarrow$$

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Proof.

First, suppose that [a] = [b].

Then, we have $a \in [a] = [b] \Rightarrow a \equiv b \pmod{n}$.

Now suppose that $a \equiv b \pmod{n}$.

$$x \in [a] \Rightarrow x \equiv a \pmod{n}$$
.

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Proof.

First, suppose that [a] = [b].

Then, we have $a \in [a] = [b] \Rightarrow a \equiv b \pmod{n}$.

Now suppose that $a \equiv b \pmod{n}$.

 $x \in [a] \Rightarrow x \equiv a \pmod{n}$.

Since, we also have $a \equiv b \pmod{n}$, it follows from transitivity that $x \equiv b \pmod{n}$.

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Proof.

First, suppose that [a] = [b].

Then, we have $a \in [a] = [b] \Rightarrow a \equiv b \pmod{n}$.

Now suppose that $a \equiv b \pmod{n}$.

 $x \in [a] \Rightarrow x \equiv a \pmod{n}$.

Since, we also have $a \equiv b \pmod{n}$, it follows from transitivity that $x \equiv b \pmod{n}$.

Thus $x \in [b]$.

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Proof.

First, suppose that [a] = [b].

Then, we have $a \in [a] = [b] \Rightarrow a \equiv b \pmod{n}$.

Now suppose that $a \equiv b \pmod{n}$.

$$x \in [a] \Rightarrow x \equiv a \pmod{n}$$
.

Since, we also have $a \equiv b \pmod{n}$, it follows from transitivity that $x \equiv b \pmod{n}$.

Thus
$$x \in [b]$$
.

So,
$$[a] \subseteq [b]$$
.

Under the equivalence relation $\equiv \pmod{n}$ on \mathbb{Z} , [a] = [b] if and only if $a \equiv b \pmod{n}$.

Proof.

First, suppose that [a] = [b].

Then, we have $a \in [a] = [b] \Rightarrow a \equiv b \pmod{n}$.

Now suppose that $a \equiv b \pmod{n}$.

$$x \in [a] \Rightarrow x \equiv a \pmod{n}$$
.

Since, we also have $a \equiv b \pmod{n}$, it follows from transitivity that $x \equiv b \pmod{n}$.

Thus $x \in [b]$.

So, $[a] \subseteq [b]$.

Similarly, we can show that $[b] \subseteq [a]$ and thus [a] = [b].

Definition

We define addition on \mathbb{Z}_n as [a] + [b] = [a + b].

Definition

We define addition on \mathbb{Z}_n as [a] + [b] = [a + b].

Note

We must take care that this is a well-defined operation since the set [a] has many different names.

DEFINITION

We define addition on \mathbb{Z}_n as [a] + [b] = [a + b].

Note

We must take care that this is a well-defined operation since the set [a] has many different names.

EXAMPLE

Let's consider $\equiv \pmod{4}$ on the integers.

Definition

We define addition on \mathbb{Z}_n as [a] + [b] = [a + b].

Note

We must take care that this is a well-defined operation since the set [a] has many different names.

EXAMPLE

Let's consider $\equiv \pmod{4}$ on the integers.

Recall that [1] = [5] and [2] = [6].

DEFINITION

We define addition on \mathbb{Z}_n as [a] + [b] = [a + b].

Note

We must take care that this is a well-defined operation since the set [a] has many different names.

EXAMPLE

Let's consider $\equiv \pmod{4}$ on the integers.

Recall that [1] = [5] and [2] = [6].

From our definition of addition, we have

DEFINITION

We define addition on \mathbb{Z}_n as [a] + [b] = [a + b].

Note

We must take care that this is a well-defined operation since the set [a] has many different names.

EXAMPLE

Let's consider $\equiv \pmod{4}$ on the integers.

Recall that [1] = [5] and [2] = [6].

From our definition of addition, we have

$$[1] + [2] = [3]$$
 while,

DEFINITION

We define addition on \mathbb{Z}_n as [a] + [b] = [a + b].

Note

We must take care that this is a well-defined operation since the set [a] has many different names.

EXAMPLE

Let's consider $\equiv \pmod{4}$ on the integers.

Recall that [1] = [5] and [2] = [6].

From our definition of addition, we have

$$[1] + [2] = [3]$$
 while,

$$[5] + [6] = [11].$$

DEFINITION

We define addition on \mathbb{Z}_n as [a] + [b] = [a + b].

Note

We must take care that this is a well-defined operation since the set [a] has many different names.

EXAMPLE

Let's consider $\equiv \pmod{4}$ on the integers.

Recall that [1] = [5] and [2] = [6].

From our definition of addition, we have

$$[1] + [2] = [3]$$
 while,

$$[5] + [6] = [11].$$

Luckily [3] = [11].

DEFINITION

We define addition on \mathbb{Z}_n as [a] + [b] = [a + b].

Note

We must take care that this is a well-defined operation since the set [a] has many different names.

EXAMPLE

Let's consider $\equiv \pmod{4}$ on the integers.

Recall that [1] = [5] and [2] = [6].

From our definition of addition, we have

$$[1] + [2] = [3]$$
 while,

$$[5] + [6] = [11].$$

Luckily
$$[3] = [11]$$
.

We must make sure that this is always the case for addition to be well defined.

1 Addition is a well defined binary operation on \mathbb{Z}_n .

- **1** Addition is a well defined binary operation on \mathbb{Z}_n .
- **2** Addition on \mathbb{Z}_n is associative.

- **1** Addition is a well defined binary operation on \mathbb{Z}_n .
- **2** Addition on \mathbb{Z}_n is associative.
- **3** Addition on \mathbb{Z}_n is commutative.

- **1** Addition is a well defined binary operation on \mathbb{Z}_n .
- **2** Addition on \mathbb{Z}_n is associative.
- **3** Addition on \mathbb{Z}_n is commutative.
- **4** [0] is the additive identity for \mathbb{Z}_n .

- **1** Addition is a well defined binary operation on \mathbb{Z}_n .
- **2** Addition on \mathbb{Z}_n is associative.
- **3** Addition on \mathbb{Z}_n is commutative.
- **4** [0] is the additive identity for \mathbb{Z}_n .
- **6** Each $a \in \mathbb{Z}_n$ has an additive inverse, [-a] in \mathbb{Z}_n .

(1.) Suppose that [a] = [c] and [b] = [d].

- **(1.)** Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and
- $[b] = [d] \Rightarrow b \equiv d \pmod{n}.$

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and
- $[b] = [d] \Rightarrow b \equiv d \pmod{n}.$

$$\Rightarrow [a+b] = [c+d].$$

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

- $\Rightarrow [a+b] = [c+d].$
- (2.) Suppose that [a],[b] and $[c] \in \mathbb{Z}_n$. Then

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

- $\Rightarrow [a+b] = [c+d].$
- (2.) Suppose that [a],[b] and $[c] \in \mathbb{Z}_n$. Then

$$([a] + [b]) + [c] = [a + b] + [c] =$$

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

$$\Rightarrow [a+b] = [c+d].$$

(2.) Suppose that [a],[b] and $[c] \in \mathbb{Z}_n$. Then

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] =$$

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

$$\Rightarrow [a+b] = [c+d].$$

(2.) Suppose that [a],[b] and $[c] \in \mathbb{Z}_n$. Then

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]$$

=

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

$$\Rightarrow [a+b] = [c+d].$$

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]$$

$$= [a] + [b + c] =$$

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

$$\Rightarrow [a+b] = [c+d].$$

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]$$

$$= [a] + [b+c] = [a] + ([b] + [c]).$$

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and
- $[b] = [d] \Rightarrow b \equiv d \pmod{n}.$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

- $\Rightarrow [a+b] = [c+d].$
- (2.) Suppose that [a],[b] and $[c] \in \mathbb{Z}_n$. Then

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]$$

- = [a] + [b+c] = [a] + ([b] + [c]).
- (3.) [a] + [b] = [a + b] = [b + a] = [b] + [a].

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

$$\Rightarrow [a+b] = [c+d].$$

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]$$

$$= [a] + [b + c] = [a] + ([b] + [c]).$$

- (3.) [a] + [b] = [a + b] = [b + a] = [b] + [a].
- **(4.)** Suppose that $[a] \in \mathbb{Z}_n$.

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

$$\Rightarrow [a+b] = [c+d].$$

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]$$

$$= [a] + [b+c] = [a] + ([b] + [c]).$$

- (3.) [a] + [b] = [a + b] = [b + a] = [b] + [a].
- **(4.)** Suppose that $[a] \in \mathbb{Z}_n$.

Then
$$[0] + [a] = [a] + [0]$$

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

$$\Rightarrow [a+b] = [c+d].$$

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]$$

$$= [a] + [b+c] = [a] + ([b] + [c]).$$

- (3.) [a] + [b] = [a + b] = [b + a] = [b] + [a].
- **(4.)** Suppose that $[a] \in \mathbb{Z}_n$.

Then
$$[0] + [a] = [a] + [0] = [a + 0] = [a]$$
.

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

$$\Rightarrow [a+b] = [c+d].$$

(2.) Suppose that [a],[b] and $[c] \in \mathbb{Z}_n$. Then

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]$$

$$= [a] + [b+c] = [a] + ([b] + [c]).$$

(3.)
$$[a] + [b] = [a + b] = [b + a] = [b] + [a].$$

(4.) Suppose that $[a] \in \mathbb{Z}_n$.

Then
$$[0] + [a] = [a] + [0] = [a + 0] = [a]$$
.

(5.) Note that $[-a] = [n-a] \in \mathbb{Z}_n$

- (1.) Suppose that [a] = [c] and [b] = [d].
- $[a] = [c] \Rightarrow a \equiv c \pmod{n}$ and

$$[b] = [d] \Rightarrow b \equiv d \pmod{n}.$$

Thus $a + b \equiv c + d \pmod{n}$ from results of section 2.4.

$$\Rightarrow [a+b] = [c+d].$$

(2.) Suppose that [a],[b] and $[c] \in \mathbb{Z}_n$. Then

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)]$$

$$= [a] + [b+c] = [a] + ([b] + [c]).$$

(3.)
$$[a] + [b] = [a + b] = [b + a] = [b] + [a].$$

(4.) Suppose that $[a] \in \mathbb{Z}_n$.

Then
$$[0] + [a] = [a] + [0] = [a + 0] = [a]$$
.

(5.) Note that $[-a] = [n-a] \in \mathbb{Z}_n$ and

$$[a] + [-a] = [a + (-a)] = [0].$$

Multiplication in \mathbb{Z}_n

DEFINITION (MULTIPLICATION IN \mathbb{Z}_n)

$$[a][b] = [ab].$$

Multiplication in \mathbb{Z}_n

DEFINITION (MULTIPLICATION IN \mathbb{Z}_n)

$$[a][b] = [ab].$$

THEOREM

- **1** Multiplication is a well defined binary operation on \mathbb{Z}_n .
- **2** Multiplication on \mathbb{Z}_n is associative.
- **3** Multiplication on \mathbb{Z}_n is commutative.
- **4** [1] is the multiplicative identity for \mathbb{Z}_n .

① Suppose that [a] = [c] and [b] = [d].

① Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$.

① Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$.

1 Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].

- 1 Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].
- ② ([a][b])[c] =

- ① Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].
- ([a][b])[c] = [ab][c] =

① Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].

([a][b])[c] = [ab][c] = [(ab)c] =

- 1 Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].
- ② ([a][b])[c] = [ab][c] = [(ab)c] = [a(bc)] =

- ① Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].
- ② ([a][b])[c] = [ab][c] = [(ab)c] = [a(bc)] = [a][bc] =

- 1 Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].
- ② ([a][b])[c] = [ab][c] = [(ab)c] = [a(bc)] = [a][bc] = [a]([b][c]).

- ① Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].
- ② ([a][b])[c] = [ab][c] = [(ab)c] = [a(bc)] = [a][bc] = [a]([b][c]).

- ① Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].
- ② ([a][b])[c] = [ab][c] = [(ab)c] = [a(bc)] = [a][bc] = [a]([b][c]).
- **4** Let $[a] \in \mathbb{Z}_n$. Then, [a][1] = [1][a] =

- ① Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].
- ② ([a][b])[c] = [ab][c] = [(ab)c] = [a(bc)] = [a][bc] = [a]([b][c]).
- **4** Let $[a] \in \mathbb{Z}_n$. Then, [a][1] = [1][a] = [(1)(a)] =

- ① Suppose that [a] = [c] and [b] = [d]. Then $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus $ab \equiv cd \pmod{n}$. So, [ab] = [cd].
- ② ([a][b])[c] = [ab][c] = [(ab)c] = [a(bc)] = [a][bc] = [a]([b][c]).
- **4** Let $[a] \in \mathbb{Z}_n$. Then, [a][1] = [1][a] = [(1)(a)] = [a].

EXAMPLE

Consider the multiplication table for \mathbb{Z}_6 .

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Zero Divisors

DEFINITION

Suppose $[0] \neq [a] \in \mathbb{Z}_n$. [a] is a zero diviosr if there is

$$[0] \neq [b] \in \mathbb{Z}_n$$
 such that $[a][b] = [0]$

Zero Divisors

DEFINITION

Suppose $[0] \neq [a] \in \mathbb{Z}_n$. [a] is a zero diviosr if there is $[0] \neq [b] \in \mathbb{Z}_n$ such that [a][b] = [0]

EXAMPLE

From the multiplication table for \mathbb{Z}_6 , we see that [2], [3] and [4] are zero divisors in \mathbb{Z}_6 .

MULTIPLICATIVE INVERSES

THEOREM

 $[a] \in \mathbb{Z}$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.

THEOREM

[a] $\in \mathbb{Z}$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.

Proof.

Suppose first that (a, n) = 1

THEOREM

[a] $\in \mathbb{Z}$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.

Proof.

Suppose first that (a, n) = 1 then there is a solution s to $ax \equiv 1 \pmod{n}$.

THEOREM

[a] $\in \mathbb{Z}$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.

Proof.

Suppose first that (a, n) = 1 then there is a solution s to $ax \equiv 1 \pmod{n}$.

Thus, [a][s] = [as] = [1].

$T_{ m HEOREM}$

[a] $\in \mathbb{Z}$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.

Proof.

Suppose first that (a, n) = 1 then there is a solution s to $ax \equiv 1 \pmod{n}$.

Thus, [a][s] = [as] = [1].

Now suppose that [a] has an inverse [b].

THEOREM

[a] $\in \mathbb{Z}$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.

Proof.

Suppose first that (a, n) = 1 then there is a solution s to $ax \equiv 1 \pmod{n}$.

Thus, [a][s] = [as] = [1].

Now suppose that [a] has an inverse [b].

Then $[a][b] = [1] \Rightarrow ab \equiv 1 \pmod{n}$.

Theorem

[a] $\in \mathbb{Z}$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.

Proof.

Suppose first that (a, n) = 1 then there is a solution s to $ax \equiv 1 \pmod{n}$.

Thus, [a][s] = [as] = [1].

Now suppose that [a] has an inverse [b].

Then $[a][b] = [1] \Rightarrow ab \equiv 1 \pmod{n}$.

So, ab-1=kn for some $k \in \mathbb{Z}$.

THEOREM

[a] $\in \mathbb{Z}$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.

Proof.

Suppose first that (a, n) = 1 then there is a solution s to $ax \equiv 1 \pmod{n}$.

Thus, [a][s] = [as] = [1].

Now suppose that [a] has an inverse [b].

Then $[a][b] = [1] \Rightarrow ab \equiv 1 \pmod{n}$.

So, ab-1=kn for some $k\in\mathbb{Z}$.

$$\Rightarrow ab + (-k)n = 1$$

Theorem

[a] $\in \mathbb{Z}$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.

Proof.

Suppose first that (a, n) = 1 then there is a solution s to $ax \equiv 1 \pmod{n}$.

Thus, [a][s] = [as] = [1].

Now suppose that [a] has an inverse [b].

Then $[a][b] = [1] \Rightarrow ab \equiv 1 \pmod{n}$.

So, ab-1=kn for some $k \in \mathbb{Z}$.

$$\Rightarrow ab + (-k)n = 1$$

$$\Rightarrow$$
 $(a, n) = 1.$

Every nonzero element of \mathbb{Z}_n has a multiplicative inverse if and only if n is prime.

Every nonzero element of \mathbb{Z}_n has a multiplicative inverse if and only if n is prime.

Proof.

Every nonzero element of \mathbb{Z}_n has a multiplicative inverse if and only if n is prime.

Proof.

$$\Leftrightarrow$$
 $(a, n) = 1$ for all $1 \le a \le n - 1$.

Every nonzero element of \mathbb{Z}_n has a multiplicative inverse if and only if n is prime.

Proof.

- \Leftrightarrow (a, n) = 1 for all $1 \le a \le n 1$.
- \Leftrightarrow *n* has no divisors between 2 and (n-1).

Every nonzero element of \mathbb{Z}_n has a multiplicative inverse if and only if n is prime.

Proof.

- \Leftrightarrow (a, n) = 1 for all $1 \le a \le n 1$.
- \Leftrightarrow *n* has no divisors between 2 and (n-1).
- \Leftrightarrow *n* is prime.

