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Given an integer n > 1 we denote the set of congruence classes
modulo n as

Zn={[0],[1],...,[n—1]}.

It is also common to omit the brackets and simply write

Zn=10,1,...,n—1}.
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Under the equivalence relation = (mod n) on Z, [a] = [b] if and
only ifa= b (mod n).

PROOF.

First, suppose that [a] = [b].
Then, we have a € [a] = [b] = a= b (mod n).

Now suppose that a = b (mod n).

x € [a] = x = a (mod n).

Since, we also have a = b (mod n), it follows from transitivity that
x = b (mod n).

Thus x € [b].

So, [a] C [b].

Similarly, we can show that [b] C [a] and thus [a] = [b]. O
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ADDITION
We define addition on Zj, as [a] + [b] = [a + b].

We must take care that this is a well-defined operation since the
set [a] has many different names.

Let's consider = (mod 4) on the integers.

Recall that [1] = [5] and [2] = [6].

From our definition of addition, we have

[1] + [2] = [3] while,

(5] + [6] = [11]

Luckily [3] = [11].

We must make sure that this is always the case for addition to be
well defined.

i
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THEOREM

@ Addition is a well defined binary operation on Z,.
® Addition on Z, is associative.

® Addition on 7Z,, is commutative.

@ (0] is the additive identity for Zp,.

@ Each a € Z,, has an additive inverse, [—a| in Zp.
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PROOF.

(1.) Suppose that [a] = [c] and [b] = [d].

[a] = [c] = a = ¢ (mod n) and

[b] = [d] = b= d (mod n).

Thus a+ b= c+ d (mod n) from results of section 2.4.

= [a+ b] = [c + d].

(2.) Suppose that [a], [b] and [c] € Z,. Then

([a] + [6]) + [c] = [a+ b] + [c] = [(a+ b) +c] = [a+ (b + ¢)]
= [a] + [b+ c] = [a] + ([b] + [c]).

(3.) [a] + [b] =[a+ b] = [b+ a] = [b] + [a].

(4.) Suppose that [a] € Zj,.

Then [0] + [a] = [a] + [0] = [a + 0] = [a].

(5.) Note that [—a] = [n—a] € Z, and

[a] + [-a] = [a + (—a)] = [0], 0
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MULTIPLICATION IN Z,

DEFINITION (MULTIPLICATION IN Z,)
[a][b] = [ab].

@ Multiplication is a well defined binary operation on Z,,.

® Multiplication on Z,, is associative.
® Multiplication on Z,, is commutative.
@ [1] is the multiplicative identity for Z,.
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@ Suppose that [a] = [c] and [b] = [d].
Then a= ¢ (mod n) and b =d (mod n).
Thus ab = cd (mod n).
So, [ab] = [cd].
@ ([a][b])[c] = [ab] [c] = [(ab)c] = [a(bc)] = [a] [be] =
[a] ([b][c])-
® [a][b] = [ab] = [ba] = [b][a]
O Let [a] € Z,. Then, [a][1] = [1][a] = [(1)(a)] = [a].
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EXAMPLE

Consider the multiplication table for Zg.

< 0] [ [2] [3] [4] [3]
[0] | [o] [o] [0] [0] [0] [O]
(1] [o] 1] [ 3] [4 [3]
211 [0 [2] [4 [0] [2] [4]
31100 (3 [o] [3] [0] [3]
[4] | [0] [4] [2] [0 [4 [2
[B1][0] [51 [4 8] [2] [
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ZERO DIVISORS

DEFINITION

Suppose [0] # [a] € Zp. [a] is a zero diviosr if there is
[0] # [b] € Zj, such that [a][b] = [0]

v

EXAMPLE

From the multiplication table for Zg, we see that [2], [3] and [4] are
zero divisors in Zg.
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MULTIPLICATIVE INVERSES

[a] € Z has a multiplicative inverse in Z, if and only if (a,n) = 1.

PROOF.

Suppose first that (a, n) = 1 then there is a solution s to ax = 1
(mod n).

Thus, [a][s] = [as] = [1].

Now suppose that [a] has an inverse [b].

Then [a][b] = [1] = ab=1 (mod n).

So, ab — 1 = kn for some k € Z.

= ab+ (—k)n=1

= (a,n) =1. O
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COROLLARY

Every nonzero element of Z,, has a multiplicative inverse if and
only if n is prime.

From our last result, every element of Z, has a multiplicative
inverse

< (a,n)=1foralll1<a<n-—1.

< n has no divisors between 2 and (n — 1).

& nis prime. []
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