MTHSC 412 Section 3.1 -Groups

Kevin James

GROUPS

DEFINITION

A group is a set G together with a binary operation * on G satisfying the following conditions.

- * is associative
- 2 G has an identity element with respect to *.
- **3** For each $g \in G$ there is an inverse g^{-1} of g with respect to *.

A *group* is a set G together with a binary operation * on G satisfying the following conditions.

- 1 * is associative
- 2 G has an identity element with respect to *.
- **3** For each $g \in G$ there is an inverse g^{-1} of g with respect to *.

DEFINITION

Suppose that G is a group with respect to *. Then G is an abelian or commutative group if * is commutative.

EXAMPLE

1 If A is any set then S(A) is a group with respect to composition of functions. This group is not abelian.

EXAMPLE

- If A is any set then S(A) is a group with respect to composition of functions. This group is not abelian.
- 2 \mathbb{Z} is an abelian group under addition.

EXAMPLE

- ① If A is any set then S(A) is a group with respect to composition of functions. This group is not abelian.
- ${f 2}$ ${\Bbb Z}$ is an abelian group under addition.
- **3** $M_n(\mathbb{R})$ is an abelian group under addition.

EXAMPLE

- If A is any set then S(A) is a group with respect to composition of functions. This group is not abelian.
- ${f 2}$ ${\Bbb Z}$ is an abelian group under addition.
- **3** $M_n(\mathbb{R})$ is an abelian group under addition.
- **4** \mathbb{Z}_n is an abelian group under addition.

NOTATION (CYCLE NOTATION FOR S_n)

1 Recall that if $A = \{1, 2, ..., n\}$ then we denote by $S_n = \mathcal{S}(A)$.

NOTATION (CYCLE NOTATION FOR S_n)

- **1** Recall that if $A = \{1, 2, ..., n\}$ then we denote by $S_n = S(A)$.
- 2 We shall use the notation $\sigma = (a_1, a_2, \dots, a_k)$ to denote the permutation $\sigma \in S_n$ defined by

$$\sigma(m) = egin{cases} a_{i+1} & ext{if } m = a_i ext{ where } 1 \leq i \leq k-1, \ a_1 & ext{if } m = a_k. \ m & ext{otherwise.} \end{cases}$$

NOTATION (CYCLE NOTATION FOR S_n)

- **1** Recall that if $A = \{1, 2, ..., n\}$ then we denote by $S_n = S(A)$.
- 2 We shall use the notation $\sigma = (a_1, a_2, \dots, a_k)$ to denote the permutation $\sigma \in S_n$ defined by

$$\sigma(m) = egin{cases} a_{i+1} & ext{if } m = a_i ext{ where } 1 \leq i \leq k-1, \ a_1 & ext{if } m = a_k. \ m & ext{otherwise}. \end{cases}$$

Example

As an element of S_3 , f=(1,2) denotes the function f on $\{1,2,3\}$ whose values are f(1)=2, f(2)=1, f(3)=3.

The elements of S_3 are e = (1), (1,2), (1,3), (2,3), (1,2,3), (1,3,2).

The elements of S_3 are e = (1), (1,2), (1,3), (2,3), (1,2,3), (1,3,2).

Note that $(1,2,3)^2 = (1,3,2)$.

The elements of S_3 are e = (1), (1,2), (1,3), (2,3), (1,2,3), (1,3,2).

Note that $(1,2,3)^2 = (1,3,2)$.

The multiplication table for S_3 is

*	(1)	(1, 2)	(1,3)	(2,3)	(1, 2, 3)	(1, 3, 2)
(1)	(1)	(1,2)	(1,3)		(1,2,3)	(1,3,2)
(1,2)	(1,2)	(1)	(1, 3, 2)	(1, 2, 3)	(2,3)	(1,3))
(1,3)	(1,3)	(1, 2, 3)	(1)	(1, 3, 2)	(1,2))	(2,3)
(2,3)	(2,3)	(1, 3, 2)	(1, 2, 3)	(1)	(1, 3)	(1,2)
(1, 2, 3)	(1,2,3)	(1,3)	(2,3)	(1, 2)	(1, 3, 2)	(1)
(1, 3, 2)	(1,3,2)	(2,3)	(1,2)	(1,3)	(1)	(1,2,3)

Let $G = \{\pm 1, \pm i\}$ where $i \in \mathbb{C}$ satisfies $i^2 = -1$.

Let $G = \{\pm 1, \pm i\}$ where $i \in \mathbb{C}$ satisfies $i^2 = -1$.

Then G is a group under multiplication of complex numbers.

Let $G = \{\pm 1, \pm i\}$ where $i \in \mathbb{C}$ satisfies $i^2 = -1$.

Then G is a group under multiplication of complex numbers.

The multiplication table for G is

*	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

If a group G has a finite number of elements then we say that G has *finite order* or that G is a *finite group*.

If a group G has a finite number of elements then we say that G has finite order or that G is a finite group.

In this case, the number of elements of G is called the *order* of G and is denoted as o(G) or |G| or #G.

If a group G has a finite number of elements then we say that G has finite order or that G is a finite group.

In this case, the number of elements of G is called the *order* of G and is denoted as o(G) or |G| or #G.

If G does not have a finite number of elements then it is said to be an *infinite group*.