MTHSC 412 Section 3.3 – Subgroups

Kevin James

Let G be a group with respect to the binary operation *. $H \subseteq G$ is a *subgroup* of G if H is a group under the binary operation *.

Let G be a group with respect to the binary operation *. $H \subseteq G$ is a *subgroup* of G if H is a group under the binary operation *. In this case, we will write $H \leq G$.

Let G be a group with respect to the binary operation *. $H \subseteq G$ is a *subgroup* of G if H is a group under the binary operation *. In this case, we will write $H \leq G$.

EXAMPLE

① Since $\mathbb{C}, \mathbb{R}, \mathbb{Q}$ and \mathbb{Z} are all groups under the same addition operation (namely addition of complex numbers), we have

Let G be a group with respect to the binary operation *. $H \subseteq G$ is a *subgroup* of G if H is a group under the binary operation *. In this case, we will write $H \leq G$.

EXAMPLE

① Since $\mathbb{C}, \mathbb{R}, \mathbb{Q}$ and \mathbb{Z} are all groups under the same addition operation (namely addition of complex numbers), we have

$$\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$$
.

2 Note that $G = \mathbb{C} - \{0\}$ is a group under multiplication of complex numbers.

Let G be a group with respect to the binary operation *. $H \subseteq G$ is a *subgroup* of G if H is a group under the binary operation *. In this case, we will write $H \leq G$.

EXAMPLE

① Since $\mathbb{C}, \mathbb{R}, \mathbb{Q}$ and \mathbb{Z} are all groups under the same addition operation (namely addition of complex numbers), we have

$$\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$$
.

2 Note that $G = \mathbb{C} - \{0\}$ is a group under multiplication of complex numbers.

Also, $H = \{\pm 1, \pm i\}$ is a group under multiplication of complex numbers and $H \subseteq G$.

Let G be a group with respect to the binary operation *. $H \subseteq G$ is a *subgroup* of G if H is a group under the binary operation *. In this case, we will write $H \leq G$.

EXAMPLE

① Since $\mathbb{C}, \mathbb{R}, \mathbb{Q}$ and \mathbb{Z} are all groups under the same addition operation (namely addition of complex numbers), we have

$$\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$$
.

2 Note that $G = \mathbb{C} - \{0\}$ is a group under multiplication of complex numbers.

Also, $H = \{\pm 1, \pm i\}$ is a group under multiplication of complex numbers and $H \subseteq G$.

Thus H < G.

A subset H of a group G is a subgroup of G if and only if the following conditions are satisfied.

- H is nonempty,
- $2 x, y \in H \Rightarrow x * y \in H,$
- $3 x \in H \Rightarrow x^{-1} \in H.$

A subset H of a group G is a subgroup of G if and only if the following conditions are satisfied.

- 1 H is nonempty,
- $2 x, y \in H \Rightarrow x * y \in H$,
- $3 x \in H \Rightarrow x^{-1} \in H.$

EXAMPLE

Recall that $\mathbb{GL}_n(\mathbb{R})$ is a group under matrix multiplication.

A subset H of a group G is a subgroup of G if and only if the following conditions are satisfied.

- 1 H is nonempty,
- $2 x, y \in H \Rightarrow x * y \in H$,
- $3 x \in H \Rightarrow x^{-1} \in H.$

EXAMPLE

Recall that $\mathbb{GL}_n(\mathbb{R})$ is a group under matrix multiplication.

Let
$$SL_n(\mathbb{R}) = \{ A \in GL_n(\mathbb{R}) \mid det(A) = 1 \}.$$

A subset H of a group G is a subgroup of G if and only if the following conditions are satisfied.

- H is nonempty,
- $2x, y \in H \Rightarrow x * y \in H$,
- $3 x \in H \Rightarrow x^{-1} \in H.$

EXAMPLE

Recall that $\mathbb{GL}_n(\mathbb{R})$ is a group under matrix multiplication.

Let
$$SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid det(A) = 1\}.$$

Show that $SL_n(\mathbb{R}) \leq GL_n(\mathbb{R})$.

Suppose that G is a group under * and that $H \subseteq G$. Then $H \le G$ if and only if the following conditions hold.

- $\mathbf{0} H \neq \emptyset$,
- $2 a, b \in H \Rightarrow ab^{-1} \in H.$

Suppose that G is a group under * and that $H \subseteq G$. Then $H \leq G$ if and only if the following conditions hold.

- $\mathbf{0} H \neq \emptyset$,
- $\mathbf{2}$ $a, b \in H \Rightarrow ab^{-1} \in H$.

Let
$$\mathbb{GL}_n^+(\mathbb{R}) = \{ A \in \mathbb{GL}_n(\mathbb{R}) \mid \det(A) > 0 \}.$$

Suppose that G is a group under * and that $H \subseteq G$. Then $H \leq G$ if and only if the following conditions hold.

- $\mathbf{0} H \neq \emptyset$,
- $\mathbf{2}$ $a, b \in H \Rightarrow ab^{-1} \in H$.

EXAMPLE

Let $\mathbb{G}L_n^+(\mathbb{R}) = \{A \in \mathbb{G}L_n(\mathbb{R}) \mid \det(A) > 0\}.$ Show that $\mathbb{G}L_n^+(\mathbb{R}) \leq \mathbb{G}L_n(\mathbb{R}).$

FACT

Suppose that G is a group and $H, K \leq G$. Then $H \cap K \leq G$ also.

Let G be a group with binary operation written as multiplication. For any $a \in G$ we define *nonnegative integral exponents* by

$$a^0 = e,$$
 $a^1 = a,$ $a^{n+1} = a^n a$ $n > 0.$

Negative integral exponents are defined by

$$a^{-n} = (a^{-1})^n$$
 $n > 0$.

Let G be a group with binary operation written as multiplication. For any $a \in G$ we define *nonnegative integral exponents* by

$$a^0 = e$$
, $a^1 = a$, $a^{n+1} = a^n a$ $n > 0$.

Negative integral exponents are defined by

$$a^{-n} = (a^{-1})^n$$
 $n > 0$.

DEFINITION

Let G be a group with binary operation written as addition. For any $a \in G$ we define nonnegative integral multiples by

$$0a = 0,$$
 $1a = a,$ $(n+1)a = na+1$ $n > 0.$

Negative integral multiples are defined by

$$(-n)a = n(-a) \qquad n > 0.$$

THEOREM (LAWS OF EXPONENTS)

Suppose that G is a group with binary operation denoted by multiplication and that $a,b\in G$, and $m,n\in \mathbb{Z}$. Then,

- $2 x^m \cdot x^n = x^{m+n},$
- **3** $(x^m)^n = x^{mn}$, and
- **4** If G is abelian then $(xy)^n = x^n y^n$.

THEOREM (LAWS OF EXPONENTS)

Suppose that G is a group with binary operation denoted by multiplication and that $a,b\in G$, and $m,n\in \mathbb{Z}$. Then,

- $2 x^m \cdot x^n = x^{m+n},$
- **3** $(x^m)^n = x^{mn}$, and
- **4** If G is abelian then $(xy)^n = x^n y^n$.

THEOREM (LAWS OF MULTIPLES)

Suppose that G is a group with binary operation denoted by addition and that $a, b \in G$, and $m, n \in \mathbb{Z}$. Then,

- 1 nx + (-n)x = 0,
- 2 mx + nx = (m+n)x,
- **3** n(mx) = (nm)x, and
- 4 If G is abelian then n(x + y) = nx + ny.

Suppose that G is a group and $a \in G$. Let $H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}.$

Suppose that G is a group and $a \in G$. Let $H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}.$ Show that $H \leq G$.

Suppose that G is a group and $a \in G$. Let $H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}.$ Show that $H \leq G$.

DEFINITION

Let G be a group. For any $a \in G$, the subgroup

$$H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}$$

is the cyclic subgroup of G generated by a.

Suppose that G is a group and $a \in G$. Let $H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}.$ Show that $H \leq G$.

DEFINITION

Let G be a group. For any $a \in G$, the subgroup

$$H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}$$

is the $cyclic \ subgroup$ of G generated by a.

This subgroup is sometimes denoted < a >.

Suppose that G is a group and $a \in G$. Let $H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}.$ Show that $H \leq G$.

DEFINITION

Let G be a group. For any $a \in G$, the subgroup

$$H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}$$

is the cyclic subgroup of G generated by a.

This subgroup is sometimes denoted < a >.

A subgroup $K \leq G$ is said to be *cyclic* if there is a $b \in G$ such that $K = \langle b \rangle$.

Suppose that G is a group and $a \in G$. Let $H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}.$ Show that $H \leq G$.

DEFINITION

Let G be a group. For any $a \in G$, the subgroup

$$H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}$$

is the cyclic subgroup of G generated by a.

This subgroup is sometimes denoted < a >.

A subgroup $K \leq G$ is said to be *cyclic* if there is a $b \in G$ such that $K = \langle b \rangle$.

In particular, G is said to be a cyclic group if $G = \langle a \rangle$ for some $a \in G$.

 $oldsymbol{0}$ $\mathbb Z$ is a cyclic subgroup since it is generated by 1.

- $oldsymbol{0}$ $\mathbb Z$ is a cyclic subgroup since it is generated by 1.
- **2** In \mathbb{Z} , the cyclic subgroup < 2 > is the subgroup of even numbers.

- \bigcirc I is a cyclic subgroup since it is generated by 1.
- **2** In \mathbb{Z} , the cyclic subgroup < 2 > is the subgroup of even numbers.
- 3 S_3 is not a cyclic group.

- \bigcirc Is a cyclic subgroup since it is generated by 1.
- **2** In \mathbb{Z} , the cyclic subgroup < 2 > is the subgroup of even numbers.
- 3 S_3 is not a cyclic group.
- **4** \mathbb{Z}_n is a cyclic group generated by [1].