MTHSC 412 Section 3.3 – Subgroups

Kevin James

Kevin James MTHSC 412 Section 3.3 – Subgroups

伺 ト く ヨ ト

문 문 문

DEFINITION

Let G be a group with respect to the binary operation *. $H \subseteq G$ is a *subgroup* of G if H is a group under the binary operation *. In this case, we will write $H \leq G$.

EXAMPLE

1 Since $\mathbb{C}, \mathbb{R}, \mathbb{Q}$ and \mathbb{Z} are all groups under the same addition operation (namely addition of complex numbers), we have

$$\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}.$$

Note that G = C - {0} is a group under multiplication of complex numbers. Also, H = {±1, ±i} is a group under multiplication of complex numbers and H ⊆ G. Thus H ≤ G.

イロト イポト イヨト イヨト

Theorem

A subset H of a group G is a subgroup of G if and only if the following conditions are satisfied.

1 H is nonempty,

$$2 x, y \in H \Rightarrow x * y \in H,$$

$$3 x \in H \Rightarrow x^{-1} \in H.$$

EXAMPLE

Recall that $\mathbb{GL}_n(\mathbb{R})$ is a group under matrix multiplication. Let $\mathbb{SL}_n(\mathbb{R}) = \{A \in \mathbb{GL}_n(\mathbb{R}) \mid \det(A) = 1\}$. Show that $\mathbb{SL}_n(\mathbb{R}) \leq \mathbb{GL}_n(\mathbb{R})$.

Theorem

Suppose that G is a group under * and that $H \subseteq G$. Then $H \leq G$ if and only if the following conditions hold.

1
$$H \neq \emptyset$$
,
2 $a, b \in H \Rightarrow ab^{-1} \in H$.

EXAMPLE

Let $\mathbb{GL}_n^+(\mathbb{R}) = \{A \in \mathbb{GL}_n(\mathbb{R}) \mid \det(A) > 0\}.$ Show that $\mathbb{GL}_n^+(\mathbb{R}) \le \mathbb{GL}_n(\mathbb{R}).$

Fact

Suppose that G is a group and $H, K \leq G$. Then $H \cap K \leq G$ also.

▲ 문 ▶ 문 문

DEFINITION

Let G be a group with binary operation written as multiplication. For any $a \in G$ we define *nonnegative integral exponents* by

$$a^0 = e,$$
 $a^1 = a,$ $a^{n+1} = a^n a$ $n > 0.$

Negative integral exponents are defined by

$$a^{-n} = (a^{-1})^n \qquad n > 0.$$

Definition

Let *G* be a group with binary operation written as addition. For any $a \in G$ we define *nonnegative integral multiples* by

$$0a = 0,$$
 $1a = a,$ $(n+1)a = na+1$ $n > 0.$

Negative integral multiples are defined by

$$(-n)a = n(-a)$$
 $n > 0.$

THEOREM (LAWS OF EXPONENTS)

Suppose that G is a group with binary operation denoted by multiplication and that $a, b \in G$, and $m, n \in \mathbb{Z}$. Then,

1
$$x^{n} \cdot x^{-n} = e$$
,
2 $x^{m} \cdot x^{n} = x^{m+n}$,
3 $(x^{m})^{n} = x^{mn}$, and
4 If G is abelian then $(xy)^{n} = x^{n}y^{n}$

THEOREM (LAWS OF MULTIPLES)

Suppose that G is a group with binary operation denoted by addition and that $a, b \in G$, and $m, n \in \mathbb{Z}$. Then,

1
$$nx + (-n)x = 0$$
,

- 2) mx + nx = (m + n)x,
- (mx) = (nm)x, and
- 4 If G is abelian then n(x + y) = nx + ny.

EXAMPLE

Suppose that *G* is a group and $a \in G$. Let $H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}.$ Show that $H \leq G$.

DEFINITION

Let G be a group. For any $a \in G$, the subgroup

$$H = \{x \in G \mid x = a^m \text{ for some } m \in \mathbb{Z}\}$$

is the *cyclic subgroup* of *G* generated by *a*. This subgroup is sometimes denoted $\langle a \rangle$. A subgroup $K \leq G$ is said to be *cyclic* if there is a $b \in G$ such that $K = \langle b \rangle$. In particular, *G* is said to be a cyclic group if $G = \langle a \rangle$ for some $a \in G$.

▲ □ ► ▲ □ ►

Example

- **1** \mathbb{Z} is a cyclic subgroup since it is generated by 1.
- **2** In \mathbb{Z} , the cyclic subgroup < 2 > is the subgroup of even numbers.
- **3** S_3 is not a cyclic group.
- **4** \mathbb{Z}_n is a cyclic group generated by [1].

A⊒ ▶ ∢ ∃