MTHSC 412 SECTION 3.4 – CYCLIC GROUPS

Kevin James

If G is a cyclic group and $G = \langle a \rangle$ then a is a generator of G.

If G is a cyclic group and $G = \langle a \rangle$ then a is a generator of G.

EXAMPLE

1 \mathbb{Z} is a cyclic group and can be generated by 1 or -1.

If G is a cyclic group and $G = \langle a \rangle$ then a is a generator of G.

EXAMPLE

- 1 \mathbb{Z} is a cyclic group and can be generated by 1 or -1.
- **2** The group $G = \{e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)\} \le S_4$ is cyclic and G = <(1, 2, 3, 4)>.

If G is a cyclic group and $G = \langle a \rangle$ then a is a generator of G.

EXAMPLE

- **1** \mathbb{Z} is a cyclic group and can be generated by 1 or -1.
- ② The group $G = \{e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)\} \le S_4$ is cyclic and G = <(1, 2, 3, 4)>. Also, G = <(1, 4, 3, 2)>.

If G is a cyclic group and $G = \langle a \rangle$ then a is a generator of G.

EXAMPLE

- 1 \mathbb{Z} is a cyclic group and can be generated by 1 or -1.
- ② The group $G = \{e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)\} \le S_4$ is cyclic and G = <(1, 2, 3, 4)>. Also, G = <(1, 4, 3, 2)>.

FACT

If a is a generator of G, then so is a^{-1} (or -a if we are using additive notation).

Let $a \in G$. If $a^n \neq e$ for all $n \in \mathbb{Z}$, then $a^p \neq a^q$ for all $p \neq q \in \mathbb{Z}$ and G is infinite.

Let $a \in G$. If $a^n \neq e$ for all $n \in \mathbb{Z}$, then $a^p \neq a^q$ for all $p \neq q \in \mathbb{Z}$ and G is infinite.

COROLLARY

If G is a finite group and $a \in G$, then there exists $n \in \mathbb{N}$ such that $a^n = e$.

Let $a \in G$. If $a^n \neq e$ for all $n \in \mathbb{Z}$, then $a^p \neq a^q$ for all $p \neq q \in \mathbb{Z}$ and G is infinite.

COROLLARY

If G is a finite group and $a \in G$, then there exists $n \in \mathbb{N}$ such that $a^n = e$.

EXAMPLE

 S_3 is a finite group. For each element $\sigma \in S_3$ find the positive integer n such that $\sigma^n = e$.

Let $a \in G$ and suppose that $a^k = e$ for some $k \in \mathbb{Z}$. Then there is a smallest positive integer m such that $a^m = e$ and

- 1 < a > has order m and $< a >= \{a^0 = e = a^m, a, a^2, \dots, a^{m-1}\}.$
- 2) $a^r = a^s$ if and only if $r \equiv s \pmod{m}$.

The *order* of an element $a \in G$ is defined by $o(a) = | \langle a \rangle |$.

The *order* of an element $a \in G$ is defined by $o(a) = | \langle a \rangle |$.

FACT

If $a \in G$ and o(a) is finite then o(a) is the least positive integer m such that $a^m = e$.

Suppose that G is cyclic and G = < a >. If $H \le G$, then either

- **1** $H = \langle e \rangle$, or
- 2) If $H \neq < e >$, then $H = < a^k >$ where k is the least positive integer such that $a^k \in H$.

Suppose that G is cyclic and $G = \langle a \rangle$. If $H \leq G$, then either

- **1** $H = \langle e \rangle$, or
- ② If $H \neq < e >$, then $H = < a^k >$ where k is the least positive integer such that $a^k \in H$.

COROLLARY

Any subgroup of a cyclic group is cyclic.

Suppose that $G = \langle a \rangle$ is cyclic of order n. If $m \in \mathbb{Z}$ and d = (m, n) then $\langle a^m \rangle = \langle a^d \rangle$.

Suppose that $G = \langle a \rangle$ is cyclic of order n. If $m \in \mathbb{Z}$ and d = (m, n) then $\langle a^m \rangle = \langle a^d \rangle$.

FACT

Suppose that $G = \langle a \rangle$ is cyclic of order n and that d|n. Then $o(a^d) = |\langle a^d \rangle| = n/d$.

Suppose that $G = \langle a \rangle$ is cyclic of order n. If $m \in \mathbb{Z}$ and d = (m, n) then $\langle a^m \rangle = \langle a^d \rangle$.

FACT

Suppose that $G = \langle a \rangle$ is cyclic of order n and that d|n. Then $o(a^d) = |\langle a^d \rangle| = n/d$.

COROLLARY

Let $G = \langle a \rangle$ be a cyclic group of order n. The distinct subgroups of G are the groups $\langle a^k \rangle$ where k is a positive divisor of n.

EXAMPLE

Suppose that $G = \mathbb{Z}_{10}$.

Note that G=<1> is cyclic of order 10. So, the distinct subgroups are:

- $0 < 0 > = \{0\}$ which has order 1.
- $2 < 5 >= \{0, 5\}$ which has order 2.
- $3 < 2 > = \{0, 2, 4, 6, 8\}$ which has order 5, and
- $4 < 1 >= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ which has order 10.

EXAMPLE

Suppose that $G \leq S_6$ is the cyclic group generated by (1,2,3,4,5,6). That is,

$$G = \{e, (1, 2, 3, 4, 5, 6), (1, 3, 5)(2, 4, 6), (1, 4)(2, 5)(3, 6), (1, 5, 3)(2, 6, 4), (1, 6, 5, 4, 3, 2)\}$$

The distinct subgroups are:

EXAMPLE

Suppose that $G \leq S_6$ is the cyclic group generated by (1,2,3,4,5,6). That is,

$$G = \{e, (1, 2, 3, 4, 5, 6), (1, 3, 5)(2, 4, 6), (1, 4)(2, 5)(3, 6), (1, 5, 3)(2, 6, 4), (1, 6, 5, 4, 3, 2)\}$$

The distinct subgroups are:

- $\mathbf{0} < e >$ which has order 1,
- $(1,2,3,4,5,6)^3 > = <(1,4)(2,5)(3,6) > = {e,(1,4)(2,5)(3,6)}$ which has order 2,
- **4** G = <(1, 2, 3, 4, 5, 6) > which has order 6.

Let $G = \langle a \rangle$ be a cyclic group of order n. Then a^m is a generator of G if and only if (m, n) = 1.

Let $G = \langle a \rangle$ be a cyclic group of order n. Then a^m is a generator of G if and only if (m, n) = 1.

EXAMPLE

① Suppose that $G = \langle a \rangle$ is a cyclic group of order 9. Then the generators of G are

$$a, a^2, a^4, a^5, a^7, a^8$$
.

Let $G = \langle a \rangle$ be a cyclic group of order n. Then a^m is a generator of G if and only if (m, n) = 1.

EXAMPLE

① Suppose that G=< a> is a cyclic group of order 9. Then the generators of G are

$$a, a^2, a^4, a^5, a^7, a^8$$
.

2 The generators of \mathbb{Z}_{10} are 1,3,7, and 9.