MTHSC 412 Section 3.4 – Cyclic Groups

Kevin James

Kevin James MTHSC 412 Section 3.4 – Cyclic Groups

白 ト く ヨ ト く ヨ ト

æ

DEFINITION

If G is a cyclic group and $G = \langle a \rangle$ then a is a generator of G.

EXAMPLE

1 \mathbb{Z} is a cyclic group and can be generated by 1 or -1.

2 The group
$$G = \{e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)\} \le S_4$$
 is cyclic and $G = <(1, 2, 3, 4) >$.
Also, $G = <(1, 4, 3, 2) >$.

Fact

If a is a generator of G, then so is a^{-1} (or -a if we are using additive notation).

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let $a \in G$. If $a^n \neq e$ for all $n \in \mathbb{Z}$, then $a^p \neq a^q$ for all $p \neq q \in \mathbb{Z}$ and G is infinite.

COROLLARY

If G is a finite group and $a \in G$, then there exists $n \in \mathbb{N}$ such that $a^n = e$.

EXAMPLE

 S_3 is a finite group. For each element $\sigma \in S_3$ find the positive integer *n* such that $\sigma^n = e$.

- 4 同 2 4 日 2 4 日 2

Let $a \in G$ and suppose that $a^k = e$ for some $k \in \mathbb{Z}$. Then there is a smallest positive integer m such that $a^m = e$ and

向下 イヨト イヨト

DEFINITION

The order of an element $a \in G$ is defined by $o(a) = | \langle a \rangle |$.

Fact

If $a \in G$ and o(a) is finite then o(a) is the least positive integer m such that $a^m = e$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Suppose that G is cyclic and $G = \langle a \rangle$. If $H \leq G$, then either

- **1** H = < e >, or
- If H ≠< e >, then H =< a^k > where k is the least positive integer such that a^k ∈ H.

COROLLARY

Any subgroup of a cyclic group is cyclic.

向下 イヨト イヨト

Suppose that $G = \langle a \rangle$ is cyclic of order n. If $m \in \mathbb{Z}$ and d = (m, n) then $\langle a^m \rangle = \langle a^d \rangle$.

Fact

Suppose that $G = \langle a \rangle$ is cyclic of order n and that d|n. Then $o(a^d) = |\langle a^d \rangle| = n/d$.

COROLLARY

Let $G = \langle a \rangle$ be a cyclic group of order n. The distinct subgroups of G are the groups $\langle a^k \rangle$ where k is a positive divisor of n.

EXAMPLE

Suppose that $G = \mathbb{Z}_{10}$. Note that G = <1> is cyclic of order 10. So, the distinct subgroups are:

$$0 < 0 >= \{0\}$$
 which has order 1.

$$2 < 5 >= \{0, 5\}$$
 which has order 2.

$$3 < 2 >= \{0, 2, 4, 6, 8\}$$
 which has order 5, and

 $4 < 1 >= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ which has order 10.

イロン イヨン イヨン イヨン

æ

EXAMPLE

Suppose that $G \leq S_6$ is the cyclic group generated by (1,2,3,4,5,6). That is,

 $G = \{e, (1, 2, 3, 4, 5, 6), (1, 3, 5)(2, 4, 6), (1, 4)(2, 5)(3, 6), (1, 5, 3)(2, 6, 4), (1, 6, 5, 4, 3, 2)\}$

The distinct subgroups are:

$$\mathbf{0} < e >$$
 which has order 1,

$${f 2} < (1,2,3,4,5,6)^3> = <(1,4)(2,5)(3,6)> = \{e,(1,4)(2,5)(3,6)\}$$
 which has order 2,

3 < ((1,2,3,4,5,6)² >=< (1,3,5)(2,4,6) >=
$$\{e, (1,3,5)(2,4,6), (1,5,3)(2,6,4)\}$$
 which has order 3, and

4
$$G = <(1, 2, 3, 4, 5, 6) >$$
 which has order 6.

▲圖▶ ▲屋▶ ▲屋▶

æ

Let $G = \langle a \rangle$ be a cyclic group of order n. Then a^m is a generator of G if and only if (m, n) = 1.

EXAMPLE

1 Suppose that $G = \langle a \rangle$ is a cyclic group of order 9. Then the generators of G are

$$a, a^2, a^4, a^5, a^7, a^8.$$

2 The generators of \mathbb{Z}_{10} are 1,3,7, and 9.

A (1) > A (1) > A