Consider the Cayley tables for \(G = \{ \pm 1, \pm i \} = \langle i \rangle \) and \(\mathbb{Z}_4 \).
Example

Consider the Cayley tables for $G = \{ \pm 1, \pm i \} = \langle i \rangle$ and \mathbb{Z}_4.

<table>
<thead>
<tr>
<th>.</th>
<th>1</th>
<th>i</th>
<th>$i^2 = -1$</th>
<th>$i^3 = -i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>i</td>
<td>$i^2 = -1$</td>
<td>$i^3 = -i$</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
<td>$i^2 = -1$</td>
<td>$i^3 = -i$</td>
<td>1</td>
</tr>
<tr>
<td>$i^2 = -1$</td>
<td>$i^2 = -1$</td>
<td>$i^3 = -i$</td>
<td>1</td>
<td>i</td>
</tr>
<tr>
<td>$i^3 = -i$</td>
<td>$i^3 = -i$</td>
<td>1</td>
<td>i</td>
<td>$i^2 = -1$</td>
</tr>
</tbody>
</table>
Example

Consider the Cayley tables for $G = \{ \pm 1, \pm i \} = \langle i \rangle$ and \mathbb{Z}_4.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>i</th>
<th>$i^2 = -1$</th>
<th>$i^3 = -i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>i</td>
<td>$i^2 = -1$</td>
<td>$i^3 = -i$</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
<td>$i^2 = -1$</td>
<td>$i^3 = -i$</td>
<td>1</td>
</tr>
<tr>
<td>$i^2 = -1$</td>
<td>$i^2 = -1$</td>
<td>$i^3 = -i$</td>
<td>1</td>
<td>i</td>
</tr>
<tr>
<td>$i^3 = -i$</td>
<td>$i^3 = -i$</td>
<td>1</td>
<td>i</td>
<td>$i^2 = -1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Consider the Cayley tables for $G = \{ \pm 1, \pm i \} = \langle i \rangle$ and \mathbb{Z}_4.

\[
\begin{array}{c|ccccc}
. & 1 & i & i^2 = -1 & i^3 = -i \\
\hline
1 & 1 & i & i^2 = -1 & i^3 = -i \\
i & i & i^2 = -1 & i^3 = -i & 1 \\
i^2 = -1 & i^2 = -1 & i^3 = -i & 1 & i \\
i^3 = -i & i^3 = -i & 1 & i & i^2 = -1 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{array}
\]

Do you notice similarities? Are these the same in some sense?
• There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides).

• There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians.

• These functions form a group under composition of functions.

• The Cayley table for this group which is denoted D_4 is

\[
\begin{array}{cccc}
e & r & r^2 & r^3 \\
e & e & r & r^2 \\
r & r & r^2 & r^3 \\
r^2 & r^2 & r^3 & e \\
r^3 & r^3 & e & r \\
v & h & d_1 & d_2 \\
v & v & h & d_1 \\
h & h & v & d_1 \\
d_1 & d_1 & h & v \\
d_2 & d_2 & v & d_1 \\
d_2 & d_2 & v & d_1 \\
\end{array}
\]
Rigid Motions of a Square

- There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.

\[
\begin{array}{|c|c|c|c|}
\hline
& e & r & r^2 \\
\hline
\hline
e & e & r & r^2 \\
\hline
r & r & e & r^2 \\
\hline
r^2 & r^2 & r & e \\
\hline
\end{array}
\]
Rigid Motions of a Square

• There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.
• There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians.
Rigid Motions of a Square

- There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.
- There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians. Take r to be the rotation through $\pi/4$ then the rotations are e, r, r^2 and r^3.

Kevin James
Rigid Motions of a Square

- There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.
- There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians. Take r to be the rotation through $\pi/4$ then the rotations are e, r, r^2 and r^3.
- These functions form a group under composition of functions.
There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.

There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians. Take r to be the rotation through $\pi/4$ then the rotations are e, r, r^2 and r^3.

These functions form a group under composition of functions.

The Cayley table for this group which is denoted D_4 is

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>r</th>
<th>r^2</th>
<th>r^3</th>
<th>d_1</th>
<th>d_2</th>
<th>h</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>r</td>
<td>r^2</td>
<td>r^3</td>
<td>d_1</td>
<td>d_2</td>
<td>h</td>
<td>v</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
<td>r^2</td>
<td>r^3</td>
<td>e</td>
<td>v</td>
<td>h</td>
<td>d_1</td>
<td>d_2</td>
</tr>
<tr>
<td>r^2</td>
<td>r^2</td>
<td>r^3</td>
<td>e</td>
<td>r</td>
<td>d_2</td>
<td>d_1</td>
<td>v</td>
<td>h</td>
</tr>
<tr>
<td>r^3</td>
<td>r^3</td>
<td>e</td>
<td>r</td>
<td>r^2</td>
<td>h</td>
<td>v</td>
<td>d_2</td>
<td>d_1</td>
</tr>
<tr>
<td>d_1</td>
<td>d_1</td>
<td>h</td>
<td>d_2</td>
<td>v</td>
<td>e</td>
<td>r^2</td>
<td>r</td>
<td>r^3</td>
</tr>
<tr>
<td>d_2</td>
<td>d_2</td>
<td>v</td>
<td>d_1</td>
<td>h</td>
<td>r^2</td>
<td>e</td>
<td>r^3</td>
<td>r</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>d_2</td>
<td>v</td>
<td>d_1</td>
<td>r^3</td>
<td>r</td>
<td>e</td>
<td>r^2</td>
</tr>
<tr>
<td>v</td>
<td>v</td>
<td>d_1</td>
<td>h</td>
<td>d_2</td>
<td>r</td>
<td>r^3</td>
<td>r^2</td>
<td>e</td>
</tr>
</tbody>
</table>
It is natural to identify the rigid motions of the square with elements of S_4 in the following way.

<table>
<thead>
<tr>
<th>Rigid Motion</th>
<th>Corresponding permutation form S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>r</td>
<td>$(1, 2, 3, 4)$</td>
</tr>
<tr>
<td>r^2</td>
<td>$(1, 3)(2, 4)$</td>
</tr>
<tr>
<td>r^3</td>
<td>$(1, 4, 3, 2)$</td>
</tr>
<tr>
<td>d_1</td>
<td>$(2, 4)$</td>
</tr>
<tr>
<td>d_2</td>
<td>$(1, 3)$</td>
</tr>
<tr>
<td>h</td>
<td>$(1, 4)(2, 3)$</td>
</tr>
<tr>
<td>v</td>
<td>$(1, 2)(3, 4)$</td>
</tr>
</tbody>
</table>
Example

The 24 permutations on \(\{1, 2, 3, 4\} \) are

\[
S_4 = \left\{ e, (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3), (1,4,3,2), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,4,2), (1,4,3), (2,3,4), (2,4,3), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) \right\}
\]
The 24 permutations on \{1, 2, 3, 4\} are

\[
S_4 = \{ \text{e, (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3), (1,4,3,2), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,4,2), (1,4,3), (2,3,4), (2,4,3), (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)} \}
\]

Feel free to write out the Cayley table.
Example

The 24 permutations on \{1, 2, 3, 4\} are

\[S_4 = \{ e, (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), \\
(1,4,2,3), (1,4,3,2), (1,2)(3,4), (1,3)(2,4), \\
(1,4)(2,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), \\
(1,4,2), (1,4,3), (2,3,4), (2,4,3), (1,2), (1,3), \\
(1,4), (2,3), (2,4), (3,4) \} \]

Feel free to write out the Cayley table.
Compare this to the rigid motions of a square....
In our previous examples we saw:

1. two groups which although not equal seem “the same as groups”, and
2. a group which naturally “sits inside another group”.

In order to make these notions precise, we would like to consider maps which preserve group structure.
Note
In our previous examples we saw:

1. two groups which although not equal seem “the same as groups”, and
2. a group which naturally “sits inside another group”.

In order to make these notions precise, we would like to consider maps which preserve group structure.

Definition
Suppose that \((G, *)\) and \((H, \circ)\) are groups. A homomorphism from \(G\) to \(H\) is a map \(\phi : G \to H\) satisfying

\[
\phi(x * y) = \phi(x) \circ \phi(y),
\]

for all \(x, y \in G\).
Example

Let $G = \{\pm 1, \pm i\}$ and define $\phi : G \to \mathbb{Z}_4$ as follows

\[
\begin{align*}
\phi(1) &= 0 \\
\phi(i) &= 1 \\
\phi(-1) &= 2 \\
\phi(-i) &= 3
\end{align*}
\]

Check that ϕ is a homomorphism.
Example

Let $G = \{\pm 1, \pm i\}$ and define $\phi : G \rightarrow \mathbb{Z}_4$ as follows

\[
\begin{align*}
\phi(1) &= 0 \\
\phi(i) &= 1 \\
\phi(-1) &= 2 \\
\phi(-i) &= 3
\end{align*}
\]

Check that ϕ is a homomorphism.

Note that ϕ is also bijective.
Definition

Suppose that \((G, \ast)\) and \((H, \circ)\) are groups and that \(\phi : G \rightarrow H\) is a homomorphism.

- If \((G, \ast) = (H, \circ)\) then \(\phi\) is called an **endomorphism**.
- If \(\phi\) is surjective then it is called an **epimorphism**.
- If \(\phi\) is injective then it is called a **monomorphism**.
- If \(\phi\) is bijective then it is called a **isomorphism**.
- If \(\phi\) is bijective and \((G, \ast) = (H, \circ)\) then it is called an **automorphism**.
We define $\phi : D_4 \rightarrow S_4$ by

\[
\begin{align*}
\phi(e) &= e \\
\phi(r) &= (1, 2, 3, 4) \\
\phi(r^2) &= (1, 3)(2, 4) \\
\phi(r^3) &= (1, 4, 3, 2) \\
\phi(d_1) &= (2, 4) \\
\phi(d_2) &= (1, 3) \\
\phi(h) &= (1, 4)(2, 3) \\
\phi(v) &= (1, 2)(3, 4)
\end{align*}
\]

Here ϕ is a group monomorphism.
Definition

If G and H are groups and if there exists an isomorphism $\phi : G \rightarrow H$, then we say that G and H are isomorphic and write $G \cong H$.

Fact

If G is a set of groups then \sim is an equivalence relation on G.

Note

We have seen that $G = \{ \pm 1, \pm i \}$ is isomorphic to \mathbb{Z}_4.

Kevin James

MTHSC 412 Section 3.5 - 3.6 – Homomorphisms and Isomorphisms
Definition

If G and H are groups and if there exists an isomorphism $\phi : G \rightarrow H$, then we say that G and H are isomorphic and write $G \cong H$.

Fact

*If G is a set of groups then \cong is an equivalence relation on G.***
Definition

If G and H are groups and if there exists an isomorphism $\phi: G \rightarrow H$, then we say that G and H are isomorphic and write $G \cong H$.

Fact

If G is a set of groups then \cong is an equivalence relation on G.

Note

We have seen that $G = \{\pm 1, \pm i\}$ is isomorphic to \mathbb{Z}_4.
Theorem

Suppose that G and H are groups and that $\phi : G \rightarrow H$ is a homomorphism. Then

1. $\phi(e_G) = e_H$
2. For all $g \in G$, $\phi(g^{-1}) = [\phi(g)]^{-1}$
Example

Define $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [x]$.

Show that ϕ is a epimorphism.

Definition

If there exists an epimorphism $\phi : G \to H$, then H is called a homomorphic image of G.

Example

\mathbb{Z}_n is a homomorphic image of \mathbb{Z}.

Kevin James
MTHSC 412 Section 3.5 - 3.6 – Homomorphisms and Isomorphisms
Example

Define $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [x]$.
Show that ϕ is a epimorphism.
Example

Define $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [x]$.
Show that ϕ is a epimorphism.

Definition

If there exists an epimorphism $\phi : G \to H$ then H is called a homomorphic image of G.

Kevin James
MTHSC 412 Section 3.5 - 3.6 – Homomorphisms and Isomorphisms
Example

Define $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [x]$.
Show that ϕ is an epimorphism.

Definition

If there exists an epimorphism $\phi : G \to H$ then H is called a *homomorphic image* of G.

Example

\mathbb{Z}_n is a homomorphic image of \mathbb{Z}.
Definition

Let $\phi : G \to H$ be a homomorphism. The *kernel* of ϕ is defined by

$$\ker(\phi) = \{ g \in G \mid \phi(g) = e_H \}.$$
Definition

Let $\phi : G \to H$ be a homomorphism. The *kernel* of ϕ is defined by

$$\ker(\phi) = \{ g \in G \mid \phi(g) = e_H \}.$$

Example

Again consider $\phi : \mathbb{Z} \to \mathbb{Z}_n$ defined by $\phi(x) = [x]$.

Fact

Suppose that $\phi : G \to H$ be a homomorphism. Then $\ker(\phi) \leq G$.
Definition

Let $\phi : G \rightarrow H$ be a homomorphism. The *kernel* of ϕ is defined by

$$\ker(\phi) = \{ g \in G \mid \phi(g) = e_H \}.$$

Example

Again consider $\phi : \mathbb{Z} \rightarrow \mathbb{Z}_n$ defined by $\phi(x) = [x]$.

Show that $\ker(\phi) = \{ nk \mid k \in \mathbb{Z} \}$.

Definition

Let $\phi : G \rightarrow H$ be a homomorphism. The *kernel* of ϕ is defined by

$$\ker(\phi) = \{ g \in G \mid \phi(g) = e_H \}.$$

Example

Again consider $\phi : \mathbb{Z} \rightarrow \mathbb{Z}_n$ defined by $\phi(x) = [x]$. Show that $\ker(\phi) = \{ nk \mid k \in \mathbb{Z} \}.$

Fact

Suppose that $\phi : G \rightarrow H$ be a homomorphism. Then $\ker(\phi) \leq G.$
Consider $\phi : \mathbb{Z} \rightarrow (\mathbb{R} - \{0\})$ defined by

$$\phi(x) = \begin{cases}
1 & \text{if } x \text{ is even,} \\
-1 & \text{if } x \text{ is odd.}
\end{cases}$$

Show that ϕ is a homomorphism and compute its kernel.