MTHSC 412 Section 3.5 - 3.6 – Homomorphisms and Isomorphisms

Kevin James

Kevin James MTHSC 412 Section 3.5 - 3.6 – Homomorphisms and Isomorphisms

- 4 回 2 - 4 □ 2 - 4 □

Consider the Cayley tables for $G = \{\pm 1, \pm i\} = \langle i \rangle$ and \mathbb{Z}_4 .

・ロン ・回と ・ヨン・

Consider the Cayley tables for $G = \{\pm 1, \pm i\} = \langle i \rangle$ and \mathbb{Z}_4 .

•	1	i	$i^2 = -1$	$i^{3} = -i$	
1	1	i	$i^2 = -1$	$i^{3} = -i$	
i	i	$i^2 = -1$	$i^{3} = -i$	1	
$i^2 = -1$	$i^2 = -1$	$i^{3} = -i$	1	i	
$i^{3} = -i$	$i^{3} = -i$	1	i	$i^2 = -1$	

イロト イヨト イヨト イヨト

æ

Consider the Cayley tables for $G = \{\pm 1, \pm i\} = \langle i \rangle$ and \mathbb{Z}_4 .

•	1	i	$i^2 = -1$	$i^{3} = -i$
1	1	i	$i^2 = -1$	$i^{3} = -i$
i	i	$i^2 = -1$	$i^{3} = -i$	1
$i^2 = -1$	$i^2 = -1$	$i^{3} = -i$	1	i
$i^{3} = -i$	$i^3 = -i$	1	i	$i^2 = -1$

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Kevin James MTHSC 412 Section 3.5 - 3.6 – Homomorphisms and Isomorp

・ロト ・回ト ・ヨト ・ヨト

æ

Consider the Cayley tables for $G = \{\pm 1, \pm i\} = \langle i \rangle$ and \mathbb{Z}_4 .

•	1	i	$i^2 = -1$	$i^{3} = -i$	
1	1	i	$i^2 = -1$	$i^{3} = -i$	
i	i	$i^2 = -1 i^3 = -1$		1	
$i^2 = -1$	$i^2 = -1$	$i^{3} = -i$	1	i	
$i^{3} = -i$	$i^{3} = -i$	1	i	$i^2 = -1$	

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Do you notice similarities? Are these the same in some sense?

イロン イヨン イヨン イヨン

• There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides).

(4回) (4回) (日)

• There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.

個 と く ヨ と く ヨ と …

- There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.
- There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians.

・回 ・ ・ ヨ ・ ・ ヨ ・

- There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.
- There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians. Take r to be the rotation through $\pi/4$ then the rotations are e, r, r^2 and r^3 .

・ 同 ト ・ ヨ ト ・ ヨ ト

- There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.
- There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians. Take r to be the rotation through $\pi/4$ then the rotations are e, r, r^2 and r^3 .
- These functions form a group under composition of functions.

(日本) (日本) (日本)

- There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1, d_2, v and h.
- There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians. Take r to be the rotation through $\pi/4$ then the rotations are e, r, r^2 and r^3 .
- These functions form a group under composition of functions.
- The Cayley table for this group which is denoted D₄ is

0	е	r	r ²	r ³	d_1	<i>d</i> ₂	h	v
е	е	r	r ²	r ³	d_1	d_2	h	V
r	r	r^2	r ³	е	V	h	d_1	<i>d</i> ₂
r^2	r^2	r ³	е	r	d_2	d_1	v	h
r^3	r ³	е	r	r^2	h	V	d_2	d_1
d_1	d_1	h	d_2	V	е	r^2	r	r^3
<i>d</i> ₂	<i>d</i> ₂	v	d_1	h	r^2	е	r^3	r
h	h	d_2	V	d_1	r ³	r	е	r^2
v	v	d_1	h	d_2	r	r ³	r^2	e

소리가 소문가 소문가 소문가

Note

It is natural to identify the rigid motions of the square with elements of S_4 in the following way.

Rigid Motion	Corresponding permutation form S_4
е	е
r	(1,2,3,4)
r ²	(1,3)(2,4)
r ³	(1, 4, 3, 2)
d_1	(2,4)
d_2	(1,3)
h	(1,4)(2,3)
V	(1,2)(3,4)

æ

The 24 permutations on $\{1, 2, 3, 4\}$ are

$$S_4 = \begin{cases} e, (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), \\ (1,4,2,3), (1,4,3,2), (1,2)(3,4), (1,3)(2,4), \\ (1,4)(2,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), \\ (1,4,2), (1,4,3), (2,3,4), (2,4,3) (1,2), (1,3), \\ (1,4), (2,3), (2,4), (3,4) \end{cases}$$

・ロン ・四と ・ヨン ・ヨン

The 24 permutations on $\{1, 2, 3, 4\}$ are

$$S_{4} = \begin{cases} e, (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), \\ (1,4,2,3), (1,4,3,2), (1,2)(3,4), (1,3)(2,4), \\ (1,4)(2,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), \\ (1,4,2), (1,4,3), (2,3,4), (2,4,3) (1,2), (1,3), \\ (1,4), (2,3), (2,4), (3,4) \end{cases}$$

Feel free to write out the Cayley table.

The 24 permutations on $\{1, 2, 3, 4\}$ are

$$S_{4} = \begin{cases} e, (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), \\ (1,4,2,3), (1,4,3,2), (1,2)(3,4), (1,3)(2,4), \\ (1,4)(2,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), \\ (1,4,2), (1,4,3), (2,3,4), (2,4,3) (1,2), (1,3), \\ (1,4), (2,3), (2,4), (3,4) \end{cases}$$

Feel free to write out the Cayley table. Compare this to the rigid motions of a square....

Note

In our previous examples we saw:

- two groups which although not equal seem "the same as groups", and
- 2 a group which naturally "sits inside another group".

In order to make these notions precise, we would like to consider maps which preserve group structure.

高 とう モン・ く ヨ と

Note

In our previous examples we saw:

- two groups which although not equal seem "the same as groups", and
- 2 a group which naturally "sits inside another group".

In order to make these notions precise, we would like to consider maps which preserve group structure.

DEFINITION

Suppose that (G, *) and (H, \circ) are groups. A *homomorphism* from G to H is a map $\phi : G \to H$ satisfying

 $\phi(x * y) = \phi(x) \circ \phi(y),$

for all $x, y \in G$.

- 4 同 6 4 日 6 4 日 6

Let $G = \{\pm 1, \pm i\}$ and define $\phi : G \to \mathbb{Z}_4$ as follows

$$\phi(1) = 0$$

 $\phi(i) = 1$
 $\phi(-1) = 2$
 $\phi(-i) = 3$

Check that ϕ is a homomorphism.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Let $G = \{\pm 1, \pm i\}$ and define $\phi : G \to \mathbb{Z}_4$ as follows

$$\phi(1) = 0$$

 $\phi(i) = 1$
 $\phi(-1) = 2$
 $\phi(-i) = 3$

Check that ϕ is a homomorphism. Note that ϕ is also bijective.

(ロ) (同) (E) (E) (E)

Suppose that (G, *) and (H, \circ) are groups and that $\phi : G \to H$ is a homomorphism.

- If $(G, *) = (H, \circ)$ then ϕ is called an *endomorphism*.
- If ϕ is sujective then it is called an *epimorphism*.
- If ϕ is injective then it is called a *momomorphism*.
- If ϕ is bijective then it is called a *isomorphism*.
- If φ is bijective and (G, *) = (H, ∘) then it is called an automorphism

We define $\phi: D_4 \rightarrow S_4$ by

$$\begin{array}{rcl}
\phi(e) &=& e\\ \phi(r) &=& (1,2,3,4)\\ \phi(r^2) &=& (1,3)(2,4)\\ \phi(r^3) &=& (1,4,3,2)\\ \phi(d_1) &=& (2,4)\\ \phi(d_2) &=& (1,3)\\ \phi(h) &=& (1,4)(2,3)\\ \phi(v) &=& (1,2)(3,4) \end{array}$$

Here ϕ is a group monomorphism.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

If G and H are groups and if there exists an isomorphism $\phi: G \to H$, then we say that G and H are isomorphic and write $G \cong H$.

(ロ) (同) (E) (E) (E)

If G and H are groups and if there exists an isomorphism $\phi: G \to H$, then we say that G and H are isomorphic and write $G \cong H$.

Fact

If \mathcal{G} is a set of groups then \cong is an equivalence relation on \mathcal{G} .

・ 回 と ・ ヨ と ・ ヨ と

If G and H are groups and if there exists an isomorphism $\phi: G \to H$, then we say that G and H are isomorphic and write $G \cong H$.

Fact

If \mathcal{G} is a set of groups then \cong is an equivalence relation on \mathcal{G} .

Note

We have seen that $G = \{\pm 1, \pm i\}$ is isomorphic to \mathbb{Z}_4 .

・ロン ・回と ・ヨン・

Theorem

Suppose that G and H are groups and that $\phi: G \to H$ is a homomorphism. Then

1
$$\phi(e_G) = e_H$$

2 Fro all $g \in G$. $\phi(g^{-1}) = [\phi(g)]^{-1}$

回 と く ヨ と く ヨ と

æ

Define $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [x]$.

Define $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [x]$. Show that ϕ is a epimorphism.

Define $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [x]$. Show that ϕ is a epimorphism.

DEFINITION

If there exists an epimorphism $\phi : G \to H$ then H is called a *homomorphic image* of G.

ヘロン 人間 とくほど 人間と

Define $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [x]$. Show that ϕ is a epimorphism.

DEFINITION

If there exists an epimorphism $\phi : G \to H$ then H is called a *homomorphic image* of G.

EXAMPLE

 \mathbb{Z}_n is a homomorphic image of \mathbb{Z} .

・ロト ・回ト ・ヨト ・ヨト

Let $\phi : \mathcal{G} \to \mathcal{H}$ be a homomorphism. The *kernel* of ϕ is defined by

$$\ker(\phi) = \{g \in G \mid \phi(g) = e_H\}.$$

(日) (四) (王) (王) (王)

Let $\phi: \mathcal{G} \to \mathcal{H}$ be a homomorphism. The *kernel* of ϕ is defined by

$$\ker(\phi) = \{g \in G \mid \phi(g) = e_H\}.$$

EXAMPLE

Again consider $\phi : \mathbb{Z} \to \mathbb{Z}_n$ defined by $\phi(x) = [x]$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Let $\phi: \mathcal{G} \to \mathcal{H}$ be a homomorphism. The *kernel* of ϕ is defined by

$$\ker(\phi) = \{g \in G \mid \phi(g) = e_H\}.$$

EXAMPLE

Again consider
$$\phi : \mathbb{Z} \to \mathbb{Z}_n$$
 defined by $\phi(x) = [x]$.
Show that $\ker(\phi) = \{nk \mid k \in \mathbb{Z}\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Let $\phi: \mathcal{G} \to \mathcal{H}$ be a homomorphism. The *kernel* of ϕ is defined by

$$\ker(\phi) = \{g \in G \mid \phi(g) = e_H\}.$$

EXAMPLE

Again consider
$$\phi : \mathbb{Z} \to \mathbb{Z}_n$$
 defined by $\phi(x) = [x]$.
Show that ker $(\phi) = \{nk \mid k \in \mathbb{Z}\}$.

Fact

Suppose that $\phi: G \to H$ be a homomorphism. Then $ker(\phi) \leq G$.

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Consider $\phi : \mathbb{Z} \to (\mathbb{R} - \{0\})$ defined by

$$\phi(x) = egin{cases} 1 & ext{if } x ext{ is even,} \ -1 & ext{if } x ext{ is odd.} \end{cases}$$

Show that ϕ is a homomorphism and compute its kernel.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで