MTHSC 412 Section 3.5 - 3.6 - Homomorphisms and Isomorphisms

Kevin James

Consider the Cayley tables for $G = \{\pm 1, \pm i\} = \langle i \rangle$ and \mathbb{Z}_4 .

•	1	i	$i^2 = -1$	$i^3 = -i$
1	1	i	$i^2 = -1$	$i^3 = -i$
i	i	$i^2 = -1$	$i^3 = -i$	1
$i^2 = -1$	$i^2 = -1$	$i^3 = -i$	1	i
$i^3 = -i$	$i^3 = -i$	1	i	$i^2 = -1$

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Do you notice similarities? Are these the same in some sense?

RIGID MOTIONS OF A SQUARE

- There are 4 reflections (2 through the diagonals and 2 through lines bisecting opposite sides). We will denote these by d_1 , d_2 , v and h.
- There are 4 rotations through $0, \pi/2, \pi$ and $3\pi/2$ radians. Take r to be the rotation through $\pi/4$ then the rotations are e, r, r^2 and r^3 .
- These functions form a group under composition of functions.
- The Cayley table for this group which is denoted D_4 is

0	e	r	r^2	r^3	d_1	d_2	h	V
е	e	r		r^3	d_1	d_2	h	V
	r	-	r^3	e	V	h	d_1	d_2
r^2	r^2	r^3		r	d_2	d_1	V	h
r^3	r^3	e	r	r^2	h	V	d_2	d_1
d_1		h		V	e	r^2	r	r^3
d_2	d_2	V	d_1	h	r^2	e	r^3	r
h	h	d_2	V	d_1	r^3		e	r^2
V	v	d_1	h	d_2	r	r^3	r^2	e

Note

It is natural to identify the rigid motions of the square with elements of S_4 in the following way.

Rigid Motion	Corresponding permutation form S_4		
e	е		
r	(1,2,3,4)		
r^2	(1,3)(2,4)		
r^3	(1,4,3,2)		
d_1	(2,4)		
d_2	(1,3)		
h	(1,4)(2,3)		
V	(1,2)(3,4)		

The 24 permutations on $\{1, 2, 3, 4\}$ are

$$S_{4} = \begin{cases} e, & (1,2,3,4), & (1,2,4,3), & (1,3,2,4), & (1,3,4,2), \\ & (1,4,2,3), & (1,4,3,2), & (1,2)(3,4), & (1,3)(2,4), \\ & (1,4)(2,3), & (1,2,3), & (1,2,4), & (1,3,2), & (1,3,4), \\ & (1,4,2), & (1,4,3), & (2,3,4), & (2,4,3) & (1,2), & (1,3), \\ & (1,4), & (2,3), & (2,4), & (3,4) \end{cases}$$

Feel free to write out the Cayley table.

Compare this to the rigid motions of a square....

Note

In our previous examples we saw:

- 1 two groups which although not equal seem "the same as groups", and
- 2 a group which naturally "sits inside another group".

In order to make these notions precise, we would like to consider maps which preserve group structure.

DEFINITION

Suppose that (G,*) and (H,\circ) are groups. A homomorphism from G to H is a map $\phi:G\to H$ satisfying

$$\phi(x*y) = \phi(x) \circ \phi(y),$$

for all $x, y \in G$.

Let $G = \{\pm 1, \pm i\}$ and define $\phi: G \to \mathbb{Z}_4$ as follows

$$\phi(1) = 0$$
 $\phi(i) = 1$
 $\phi(-1) = 2$
 $\phi(-i) = 3$

Check that ϕ is a homomorphism. Note that ϕ is also bijective.

DEFINITION

Suppose that (G,*) and (H,\circ) are groups and that $\phi:G\to H$ is a homomorphism.

- If $(G,*) = (H, \circ)$ then ϕ is called an *endomorphism*.
- If ϕ is sujective then it is called an *epimorphism*.
- If ϕ is injective then it is called a momomorphism.
- If ϕ is bijective then it is called a *isomorphism*.
- If ϕ is bijective and $(G,*) = (H,\circ)$ then it is called an automorphism

We define $\phi: D_4 \to S_4$ by

$$\phi(e) = e
\phi(r) = (1,2,3,4)
\phi(r^2) = (1,3)(2,4)
\phi(r^3) = (1,4,3,2)
\phi(d_1) = (2,4)
\phi(d_2) = (1,3)
\phi(h) = (1,4)(2,3)
\phi(v) = (1,2)(3,4)$$

Here ϕ is a group monomorphism.

DEFINITION

If G and H are groups and if there exists an isomorphism $\phi:G\to H$, then we say that G and H are isomorphic and write $G\cong H$.

FACT

If \mathcal{G} is a set of groups then \cong is an equivalence relation on \mathcal{G} .

Note

We have seen that $G = \{\pm 1, \pm i\}$ is isomorphic to \mathbb{Z}_4 .

THEOREM

Suppose that G and H are groups and that $\phi: G \to H$ is a homomorphism. Then

- **2** Fro all $g \in G$, $\phi(g^{-1}) = [\phi(g)]^{-1}$

Define $\phi : \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(x) = [x]$.

Show that ϕ is a epimorphism.

DEFINITION

If there exists an epimorphism $\phi: G \to H$ then H is called a homomorphic image of G.

EXAMPLE

 \mathbb{Z}_n is a homomorphic image of \mathbb{Z} .

DEFINITION

Let $\phi: G \to H$ be a homomorphism. The *kernel* of ϕ is defined by

$$\ker(\phi) = \{g \in G \mid \phi(g) = e_H\}.$$

EXAMPLE

Again consider $\phi : \mathbb{Z} \to \mathbb{Z}_n$ defined by $\phi(x) = [x]$.

Show that $ker(\phi) = \{nk \mid k \in \mathbb{Z}\}.$

FACT

Suppose that $\phi: G \to H$ be a homomorphism. Then $\ker(\phi) \leq G$.

Consider $\phi: \mathbb{Z} \to (\mathbb{R} - \{0\})$ defined by

$$\phi(x) = \begin{cases} 1 & \text{if } x \text{ is even,} \\ -1 & \text{if } x \text{ is odd.} \end{cases}$$

Show that ϕ is a homomorphism and compute its kernel.