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EXAMPLE

Consider the Cayley tables for G = {+1,4+i} =< i > and Zj4.
[ [ T [ 7 [P=A[F=7]
1 1 i P==1[PF=—i
i i P=—1|PF=—i 1
P=—1iF=-1]PF=-i 1 i
B=—il P==i 1 i iZ=—1
ESLIESEIE]
010|123
111/2|3|0
21121301
313[0(1]2
Do you notice similarities? Are these the same in some sense?
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R1GID MOTIONS OF A SQUARE

e There are 4 reflections (2 through the diagonals and 2 through lines
bisecting opposite sides). We will denote these by di, db, v and h.

e There are 4 rotations through 0, 7/2, 7 and 37 /2 radians. Take r to
be the rotation through /4 then the rotations are e, r, r?> and r.

e These functions form a group under composition of functions.

e The Cayley table for this group which is denoted Dj is

o e r 2 P d d h %
ele r 7 B d d& h v
r rorr B e v h d d
Pl roe r d» di v h
Pl e r r2 h v d di
d|di h d v e 2 r
d2 d2 v d1 h r 2 e r 3 r
h| h d v d r* r e
v v d h d& r P 2 e
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It is natural to identify the rigid motions of the square with
elements of Sy in the following way.
Rigid Motion | Corresponding permutation form S,
e e
r (1,2,3,4)
r? (1,3)(2,4)
r3 (1,4,3,2)
di (2,4)
d> (1,3)
h (1,4)(2,3)
(1,2)(3,4)
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EXAMPLE
The 24 permutations on {1,2,3,4} are

N
S

e, (1,2,3.4), (1,2,4,3), (1,3.2,4), (1,3.4,2),
(1,4,2,3), (1,43,2), (1,2)(3.4), (1,3)(2.4),
Ss =< (1,4)(2,3), (1,2,3), (1,2,4), (1,3,2), (1,3.4),
(1,4,2), (1,4,3), (2,3,4), (2,4,3) (1,2), (1,3),

(1.4). (2.3). (24). (3.4)

Feel free to write out the Cayley table.
Compare this to the rigid motions of a square....
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NOTE

In our previous examples we saw:
@ two groups which although not equal seem “the same as
groups”, and
® a group which naturally “sits inside another group”.

In order to make these notions precise, we would like to consider
maps which preserve group structure.

DEFINITION

Suppose that (G, *) and (H, o) are groups. A homomorphism from
G to His a map ¢ : G — H satisfying

¢(xxy) = o(x) 0 d(y),

for all x,y € G.

A
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EXAMPLE
Let G = {£1,=£i} and define ¢ : G — Z4 as follows

¢(1) = 0
o(i) = 1
¢(-1) = 2
¢(=i) = 3

Check that ¢ is a homomorphism.
Note that ¢ is also bijective.
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DEFINITION

Suppose that (G, *) and (H, o) are groups and that ¢ : G — H is
a homomorphism.

e If (G, %) = (H,o0) then ¢ is called an endomorphism.

o If ¢ is sujective then it is called an epimorphism.

e If ¢ is injective then it is called a momomorphism.

e If ¢ is bijective then it is called a isomorphism.

e If ¢ is bijective and (G, *) = (H, o) then it is called an
automorphism
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EXAMPLE

We define ¢ : Dy — S4 by
¢ple) = e
o(r) = (1,2,3,4)
o(r’) = (1,3)(2,4)
o(r®) = (1,4,3,2)
P(d) = (2,4)
p(d2) = (1,3)
o(h) = (1,4)(2,3)
p(v) = (1,2)(3,4)
Here ¢ is a group monomorphism.
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If G and H are groups and if there exists an isomorphism
¢ : G — H, then we say that G and H are isomorphic and write
GH.

If G is a set of groups then = is an equivalence relation on G.
We have seen that G = {£1, £/} is isomorphic to Zs.
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Suppose that G and H are groups and that ¢ : G — H is a
homomorphism. Then

O ¢(ec) = en
® Froallgc G, ¢p(g™1) = [o(g)] !
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Define ¢ : Z — Z, by ¢(x) = [x].
Show that ¢ is a epimorphism.

If there exists an epimorphism ¢ : G — H then H is called a
homomorphic image of G.

Zn is a homomorphic image of Z.
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DEFINITION

Let ¢ : G — H be a homomorphism. The kernel of ¢ is defined by

ker(¢p) ={g € G | ¢(g)=en}

| A\

EXAMPLE
Again consider ¢ : Z — Z,, defined by ¢(x) = [x].
Show that ker(¢) = {nk | k€ Z}.

A\

Suppose that ¢ : G — H be a homomorphism. Then ker(¢) < G.
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EXAMPLE
Consider ¢ : Z — (R — {0}) defined by

¢(x) =

1 if x is even,
—1 if x is odd.

Show that ¢ is a homomorphism and compute its kernel.
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