MTHSC 412 Section 4.1 – Finite Permutation Groups

Kevin James

Kevin James MTHSC 412 Section 4.1 – Finite Permutation Groups

回 と く ヨ と く ヨ と

æ

Note

Suppose that $A = \{a_1, a_2, ..., a_n\}$ is a finite set. Any permutation $f \in S(A)$ can be identified with the permutation f' on $B = \{1, 2, ..., n\}$ defined by f'(i) = j where $f(a_i) = a_j$. In fact, this identification gives an isomorphism of the groups S(A) and S_n .

DEFINITION

Given a permutation $\sigma \in S_n$ and $1 \le a \le n$, we call the set $\{\sigma^k(a) \mid k \ge 0\}$ an *orbit* of σ .

Fact

Any permutation $\sigma \in S_n$ can be written as a disjoint product of cycles. The cycles in this decomposition correspond to the orbits of σ .

(ロ) (同) (E) (E) (E)

MISCELLANEOUS PROPERTIES OF PERMUTATIONS

Fact

- **1** If $f, g \in S_n$ are disjoint cycles, then fg = gf.
- 2 The inverse of $(a_1, a_2, \ldots, a_{n-1}, a_n)$ is $(a_n, a_{n-1}, \ldots, a_2, a_1) = (a_1, a_n, a_{n-1}, \ldots, a_3, a_2).$
- **3** The order of an r-cycle (a_1, \ldots, a_r) is r.
- $(a_1,\ldots,a_r)^{-1}=(a_1,\ldots,a_r)^{r-1}.$
- If f = σ₁σ₂...σ_k ∈ S_n where the σ_i are disjoint cycles of length r_i, then the order of f is the lowest common multiple of the r_i.

マボン イラン イラン 一日

A 2-cycle is called a *transposition*.

Fact

Any permutation $\sigma \in S_n$ can be written as a product of transpositons.

Proof.

Since any permutation can be written as a product of cycles, it suffices to show that any cycle can be written as a product of transpositions, and

$$(a_1, a_2, \ldots, a_k) = (a_1, a_k)(a_1, a_{k-1}) \ldots (a_1, a_3)(a_1, a_2).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

Note that

$$(1,2)(2,3)(3,4) = (1,2)(5,6)(2,3)(3,4)(5,6)$$

So the number of transpositions in a decomposition of a permutation into transpositions is not unique.

Theorem

Suppose that $f \in S_n$. If f can be decomposed into p transpositions and into q transpositions, then $p \equiv q \pmod{2}$.

We will develop the proof of this theorem over the next few slides...

伺下 イヨト イヨ

Consider the polynomial in the variables $x_1, x_2, ..., x_n$ defined by $P = \prod_{1 \le i < j \le n} (x_i - x_j)$.

DEFINITION

We define an action of S_n on any constant multiple cP of the polynomial P as follows.

$$\sigma(cP) = c\sigma(P) = c \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

<ロ> (四) (四) (三) (三) (三)

EXAMPLE

Take
$$n = 3$$
.
Then $P = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$
Consider $\sigma = (1, 2)$ applied to P .
 $\sigma(P) = (x_2 - x_1)(x_2 - x_3)(x_1 - x_3) = -P$.

Lemma

If
$$f \in S_n$$
, then $f(P) = (\pm 1)P$.

LEMMA

If
$$\tau = (r, s) \in S_n$$
 is any transposition, then $\tau(P) = -P$.

LEMMA

Suppose that $f, g \in S_n$ then f(g(P)) = (fg)(P).

Now, we can prove the theorem...

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Definition

A permutation that can be decomposed into an even number of transpositions is called an *even* permutation.

A permutation that can be decomposed into an odd number of transpositions is called an *odd* permutation.

Fact

An r-cycle is even if and only if r is odd.

白 ト イヨト イヨト

The alternating group A_n is the set of even permutations of S_n .

Theorem

 $A_n \leq S_n$.

Example

$$\begin{aligned} &A_3 = \{ e, (1,2,3), (1,3,2) \}. \\ &A_4 = \begin{cases} e, (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,4,2), (1,4,3), \\ (2,3,4), (2,4,3), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) \end{cases} \right\}. \end{aligned}$$

・ロン ・回と ・ヨン ・ヨン

æ

Suppose that $a, b \in G$. The conjugate of a by b is bab^{-1} . We say that $c \in G$ is a conjugate of a if and only if there is $b \in G$ such that $c = bab^{-1}$.

NOTE (CONJUGATES OF PERMUTATIONS)

Suppose that
$$f, g \in S_n$$
. If $1 \le i, j \le n$ and $f(i) = j$,
then $gfg^{-1}(g(i)) = g(f(i)) = g(j)$,
that is gfg^{-1} sends $g(i)$ to $g(j)$.
Thus, if
 $f = (a_{1,1}, a_{1,2}, ..., a_{1,r_1})(a_{2,1}, ..., a_{2,r_2}) ... (a_{k,1}, ..., a_{k,r_k})$
is a decomposition of f into distinct cycles,
then $gfg^{-1} = (g(a_{1,1}), ..., g(a_{1,r_1}))(g(a_{2,1}), ..., g(a_{2,r_2})) ... (g(a_{k,1}), ..., g(a_{k,r_k}))$

▲圖▶ ▲屋▶ ▲屋▶