MTHSC 412 SECTION 4.2 – CAYLEY'S THEOREM

Kevin James

Every group is isomorphic to a group of permutations. In particular, any group G is isomorphic to a subgroup of S(G), that is there is a monomorphism $\phi: G \to S(G)$.

Every group is isomorphic to a group of permutations. In particular, any group G is isomorphic to a subgroup of S(G), that is there is a monomorphism $\phi: G \to S(G)$.

EXAMPLE

Let $G = \mathbb{Z}_5$.

Every group is isomorphic to a group of permutations. In particular, any group G is isomorphic to a subgroup of S(G), that is there is a monomorphism $\phi: G \to S(G)$.

EXAMPLE

Let $G = \mathbb{Z}_5$.

$$f_0 =$$

Every group is isomorphic to a group of permutations. In particular, any group G is isomorphic to a subgroup of S(G), that is there is a monomorphism $\phi: G \to S(G)$.

EXAMPLE

Let $G = \mathbb{Z}_5$.

$$f_0 = e$$

$$f_1 =$$

Every group is isomorphic to a group of permutations. In particular, any group G is isomorphic to a subgroup of S(G), that is there is a monomorphism $\phi: G \to S(G)$.

EXAMPLE

Let $G = \mathbb{Z}_5$.

$$f_0 = e$$

 $f_1 = (0, 1, 2, 3, 4)$
 $f_2 =$

Every group is isomorphic to a group of permutations. In particular, any group G is isomorphic to a subgroup of S(G), that is there is a monomorphism $\phi: G \to S(G)$.

EXAMPLE

Let $G = \mathbb{Z}_5$.

$$f_0 = e$$

 $f_1 = (0,1,2,3,4)$
 $f_2 = (0,2,4,1,3)$
 $f_3 =$

Every group is isomorphic to a group of permutations. In particular, any group G is isomorphic to a subgroup of S(G), that is there is a monomorphism $\phi: G \to S(G)$.

EXAMPLE

Then,

Let $G = \mathbb{Z}_5$.

$$f_0 = e$$

$$f_1 = (0,1,2,3,4)$$

$$f_2 = (0,2,4,1,3)$$

$$f_3 = (0,3,1,4,2)$$

Every group is isomorphic to a group of permutations. In particular, any group G is isomorphic to a subgroup of S(G), that is there is a monomorphism $\phi: G \to S(G)$.

EXAMPLE

Let $G = \mathbb{Z}_5$.

$$f_0 = e$$

$$f_1 = (0,1,2,3,4)$$

$$f_2 = (0,2,4,1,3)$$

$$f_3 = (0,3,1,4,2)$$

$$f_4 = (0,4,3,2,1)$$

Every group is isomorphic to a group of permutations. In particular, any group G is isomorphic to a subgroup of S(G), that is there is a monomorphism $\phi: G \to S(G)$.

EXAMPLE

Let $G = \mathbb{Z}_5$.

$$f_0 = e$$

 $f_1 = (0,1,2,3,4)$
 $f_2 = (0,2,4,1,3)$
 $f_3 = (0,3,1,4,2)$
 $f_4 = (0,4,3,2,1)$

So,
$$G' = \{e, (0, 1, 2, 3, 4), (0, 2, 4, 1, 3), (0, 3, 1, 4, 2), (0, 4, 3, 2, 1)\} \le \mathcal{S}(\mathbb{Z}_5).$$