MTHSC 412 SECTION 4.4 – COSETS OF A SUBGROUP

Kevin James

Suppose that (G,*) is a group and $A,B\subseteq G$. Then we define A*B (or simply AB) by

$$AB = \{x \in G \mid x = ab \text{ for some } a \in A \text{ and } b \in B\}$$

Suppose that (G,*) is a group and $A,B\subseteq G$. Then we define A*B (or simply AB) by

$$AB = \{x \in G \mid x = ab \text{ for some } a \in A \text{ and } b \in B\}$$

EXAMPLE

Consider
$$G = S_4$$
, $A = \{e, (1, 2, 3), (1, 3, 2)\}$ and $B = \{(1, 2), (2, 3, 4)\}$ Then,

$$AB = \{(1,2), (1,3), (2,3), (2,3,4), (1,2)(3,4), (1,3,4)\},\$$

and

$$BA = \{(1,2), (2,3), (1,3), (2,3,4), (1,3)(2,4), (1,4,2)\}.$$

NOTATION

Suppose that G is a group and $g \in G$ and $A \subseteq G$. Then we denote by gA and Ag the products $\{g\}A$ and $A\{g\}$.

NOTATION

Suppose that G is a group and $g \in G$ and $A \subseteq G$. Then we denote by gA and Ag the products $\{g\}A$ and $A\{g\}$.

Theorem (Properties of Products of Subsets)

- 2 $B = C \Rightarrow AB = AC$ and BA = CA
- 3 In general AB and BA may be different.

Suppose that G is a group and that $H \leq G$. For $a \in G$ the set aH is a *left coset of H*. Similarly, the set Ha is called a *right coset of H*.

Suppose that G is a group and that $H \leq G$. For $a \in G$ the set aH is a *left coset of H*. Similarly, the set Ha is called a *right coset of H*.

EXAMPLE

Consider $G = S_3$ and $H = \{e, (1, 2, 3), (1, 3, 2)\}$. Then

Suppose that G is a group and that $H \leq G$. For $a \in G$ the set aH is a *left coset of H*. Similarly, the set Ha is called a *right coset of H*.

EXAMPLE

Consider
$$G = S_3$$
 and $H = \{e, (1, 2, 3), (1, 3, 2)\}$. Then $(1, 2)H = \{(1, 2), (2, 3), (1, 3)\}$

Suppose that G is a group and that $H \leq G$. For $a \in G$ the set aH is a *left coset of H*. Similarly, the set Ha is called a *right coset of H*.

EXAMPLE

Consider
$$G = S_3$$
 and $H = \{e, (1, 2, 3), (1, 3, 2)\}$. Then $(1, 2)H = \{(1, 2), (2, 3), (1, 3)\}$ $(1, 2, 3)H = H$.

Suppose that G is a group and that $H \leq G$. For $a \in G$ the set aH is a *left coset of H*. Similarly, the set Ha is called a *right coset of H*.

EXAMPLE

Consider $G = S_3$ and $H = \{e, (1, 2, 3), (1, 3, 2)\}$. Then $(1, 2)H = \{(1, 2), (2, 3), (1, 3)\}$ (1, 2, 3)H = H.

In fact, these are the only left cosets of H.

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Lemma

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

So, the left cosets of H are nonempty and their union is G.

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

So, the left cosets of H are nonempty and their union is G.

Now suppose that $aH \cap bH \neq \emptyset$.

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

So, the left cosets of H are nonempty and their union is G.

Now suppose that $aH \cap bH \neq \emptyset$.

Let $c \in aH \cap bH$.

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

So, the left cosets of H are nonempty and their union is G.

Now suppose that $aH \cap bH \neq \emptyset$.

Let $c \in aH \cap bH$.

Then there is $h, k \in H$ such that ah = c = bk

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

So, the left cosets of H are nonempty and their union is G.

Now suppose that $aH \cap bH \neq \emptyset$.

Let $c \in aH \cap bH$.

Then there is $h, k \in H$ such that ah = c = bk

Thus $a = bkh^{-1} \in bH$ and $b = ahk^{-1} \in aH$.

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

So, the left cosets of H are nonempty and their union is G.

Now suppose that $aH \cap bH \neq \emptyset$.

Let $c \in aH \cap bH$.

Then there is $h, k \in H$ such that ah = c = bk

Thus $a = bkh^{-1} \in bH$ and $b = ahk^{-1} \in aH$.

If $ah' \in aH$ then $ah' = bkh^{-1}h' \in bH$.

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

So, the left cosets of H are nonempty and their union is G.

Now suppose that $aH \cap bH \neq \emptyset$.

Let $c \in aH \cap bH$.

Then there is $h, k \in H$ such that ah = c = bk

Thus $a = bkh^{-1} \in bH$ and $b = ahk^{-1} \in aH$.

If $ah' \in aH$ then $ah' = bkh^{-1}h' \in bH$.

Thus $aH \subseteq bH$.

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

So, the left cosets of H are nonempty and their union is G.

Now suppose that $aH \cap bH \neq \emptyset$.

Let $c \in aH \cap bH$.

Then there is $h, k \in H$ such that ah = c = bk

Thus $a = bkh^{-1} \in bH$ and $b = ahk^{-1} \in aH$.

If $ah' \in aH$ then $ah' = bkh^{-1}h' \in bH$.

Thus $aH \subseteq bH$.

Similarly, $bH \subseteq aH$. Thus aH = bH.

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

Since $e \in H$, $a \in aH$ for all $a \in G$.

So, the left cosets of H are nonempty and their union is G.

Now suppose that $aH \cap bH \neq \emptyset$.

Let $c \in aH \cap bH$.

Then there is $h, k \in H$ such that ah = c = bk

Thus $a = bkh^{-1} \in bH$ and $b = ahk^{-1} \in aH$.

If $ah' \in aH$ then $ah' = bkh^{-1}h' \in bH$.

Thus $aH \subseteq bH$.

Similarly, $bH \subseteq aH$. Thus aH = bH.

Thus we have shown that $aH \cap bH \neq \emptyset \Rightarrow aH = bH$ and thus the distinct left cosets are pairwise disjoint.

Suppose that $H \leq G$. The *index* of H in G is defined to be the number of distinct left cosets of H in G and is denoted by [G:H].

Suppose that $H \leq G$. The *index* of H in G is defined to be the number of distinct left cosets of H in G and is denoted by [G:H].

EXAMPLE

Suppose that $G = S_3$ and $H = \{e, (1, 2, 3), (1, 3, 2)\}.$

Suppose that $H \leq G$. The *index* of H in G is defined to be the number of distinct left cosets of H in G and is denoted by [G:H].

EXAMPLE

Suppose that $G = S_3$ and $H = \{e, (1, 2, 3), (1, 3, 2)\}.$

We saw earlier that there are 2 distinct cosets of H in G.

Suppose that $H \leq G$. The *index* of H in G is defined to be the number of distinct left cosets of H in G and is denoted by [G:H].

EXAMPLE

Suppose that $G = S_3$ and $H = \{e, (1, 2, 3), (1, 3, 2)\}.$

We saw earlier that there are 2 distinct cosets of H in G.

So,
$$[G:H] = 2$$
.

THEOREM (LAGRANGE'S THEOREM)

If $H \leq G$ and if G is finite, then

$$|G|=[G:H]|H|.$$

THEOREM (LAGRANGE'S THEOREM)

If $H \leq G$ and if G is finite, then

|G| = [G:H]|H|.

COROLLARY

Suppose that G is a finite group and that $g \in G$. Then o(g)|#G.

THEOREM (LAGRANGE'S THEOREM)

If $H \leq G$ and if G is finite, then

|G|=[G:H]|H|.

COROLLARY

Suppose that G is a finite group and that $g \in G$. Then o(g)|#G.

COROLLARY

Suppose that G is a group and that |G| = p is prime. Then G is cyclic.