MTHSC 412 Section 4.4 – Cosets of a subgroup

Kevin James

Kevin James MTHSC 412 Section 4.4 – Cosets of a subgroup

★ 문 ► ★ 문 ►

A ■

DEFINITION

Suppose that (G, *) is a group and $A, B \subseteq G$. Then we define A * B (or simply AB) by

 $AB = \{x \in G \mid x = ab \text{ for some } a \in A \text{ and } b \in B\}$

EXAMPLE

Consider
$$G = S_4$$
, $A = \{e, (1, 2, 3), (1, 3, 2)\}$ and $B = \{(1, 2), (2, 3, 4)\}$ Then,

$$AB = \{(1,2), (1,3), (2,3), (2,3,4), (1,2)(3,4), (1,3,4)\},\$$

and

$$BA = \{(1,2), (2,3), (1,3), (2,3,4), (1,3)(2,4), (1,4,2)\}.$$

・ロト ・回ト ・ヨト ・ヨト

NOTATION

Suppose that G is a group and $g \in G$ and $A \subseteq G$. Then we denote by gA and Ag the products $\{g\}A$ and $A\{g\}$.

THEOREM (PROPERTIES OF PRODUCTS OF SUBSETS)

$$(BC) = (AB)C.$$

$$2 B = C \Rightarrow AB = AC \text{ and } BA = CA$$

8 In general AB and BA may be different.

$$AB = AC \Rightarrow B = C$$

$$\mathbf{S} g A = g B \Rightarrow A = B.$$

- 4 同 2 4 日 2 4 日 2

DEFINITION

Suppose that G is a group and that $H \leq G$. For $a \in G$ the set aH is a *left coset of H*. Similarly, the set Ha is called a *right coset of H*.

EXAMPLE

Consider $G = S_3$ and $H = \{e, (1, 2, 3), (1, 3, 2)\}$. Then $(1, 2)H = \{(1, 2), (2, 3), (1, 3)\}$ (1, 2, 3)H = H. In fact, these are the only left cosets of H.

伺 ト イヨト イヨト

Lemma

Suppose that $H \leq G$. The distinct left cosets of H form a partition of G.

Proof.

```
Since e \in H, a \in aH for all a \in G.
So, the left cosets of H are nonempty and their union is G.
Now suppose that aH \cap bH \neq \emptyset.
Let c \in aH \cap bH.
Then there is h, k \in H such that ah = c = bk
Thus a = bkh^{-1} \in bH and b = ahk^{-1} \in aH.
If ah' \in aH then ah' = bkh^{-1}h' \in bH.
Thus aH \subset bH.
Similarly, bH \subseteq aH. Thus aH = bH.
Thus we have shown that aH \cap bH \neq \emptyset \Rightarrow aH = bH and thus the
distinct left cosets are pairwise disjoint.
```

(4月) (4日) (4日)

DEFINITION

Suppose that $H \leq G$. The *index* of H in G is defined to be the number of distinct left cosets of H in G and is denoted by [G : H].

EXAMPLE

Suppose that $G = S_3$ and $H = \{e, (1, 2, 3), (1, 3, 2)\}$. We saw earlier that there are 2 distinct cosets of H in G. So, [G : H] = 2.

伺下 イヨト イヨト

THEOREM (LAGRANGE'S THEOREM)

If $H \leq G$ and if G is finite, then

$$|G| = [G:H]|H|.$$

COROLLARY

Suppose that G is a finite group and that $g \in G$. Then o(g)|#G.

COROLLARY

Suppose that G is a group and that |G| = p is prime. Then G is cyclic.

- 4 回 ト 4 ヨ ト 4 ヨ ト