MTHSC 412 SECTION 4.5 – NORMAL SUBGROUPS

Kevin James

Suppose that $H \leq G$. H is a normal subgroup or G if xH = Hx for all $x \in G$. In this case, we will write $H \subseteq G$.

Suppose that $H \leq G$. H is a normal subgroup or G if xH = Hx for all $x \in G$. In this case, we will write $H \subseteq G$.

EXAMPLE

- 1 If G is abelian then $H \leq G$ if and only if $H \leq G$.
- \bigcirc A_3 is a normal subgroup of S_3 .
- 3 $\{e, (1, 2)\}$ is a non-normal subgroup of S_3 .

THEOREM

Suppose that $H \leq G$. Then H = hH = Hh for all $h \in H$.

THEOREM

Suppose that $H \leq G$. Then H = hH = Hh for all $h \in H$.

COROLLARY

For any $H \leq G$, $H^2 = H$.

THEOREM

Suppose that $H \leq G$. Then $H \leq G$ if and only if $xHx^{-1} = H$ for all $x \in G$.

Definition

Suppose that G is a group and that $\emptyset \neq A \subseteq G$. Then the *set* generated by A denoted A > B is defined by

$$< A >= \{x \in G \mid x = a_1 a_2 \dots a_n \text{ where either } a_i \in A \text{ or } a_i^{-1} \in A\}.$$

Suppose that G is a group and that $\emptyset \neq A \subseteq G$. Then the *set* generated by A denoted < A > is defined by

$$< A >= \{x \in G \mid x = a_1 a_2 \dots a_n \text{ where either } a_i \in A \text{ or } a_i^{-1} \in A\}.$$

THEOREM

For any $\emptyset \neq A \subseteq G$, $\langle A \rangle \leq G$.

Suppose that G is a group and that $\emptyset \neq A \subseteq G$. Then the *set* generated by A denoted A > B is defined by

$$< A >= \{x \in G \mid x = a_1 a_2 \dots a_n \text{ where either } a_i \in A \text{ or } a_i^{-1} \in A\}.$$

THEOREM

For any $\emptyset \neq A \subseteq G$, $\langle A \rangle \leq G$.

EXAMPLE

Let $G = S_3$ and let $A = \{(1,2), (1,3)\}$. Compute A > 0.