MTHSC 412 SECTION 4.6 – QUOTIENT GROUPS

Kevin James

Let $H \subseteq G$. Then the cosets of H form a group with the operation being the multiplication of sets. This group is denoted G/H.

Let $H \subseteq G$. Then the cosets of H form a group with the operation being the multiplication of sets. This group is denoted G/H.

EXAMPLE

1 Note that $n\mathbb{Z} \leq \mathbb{Z}$. What is $\mathbb{Z}/n\mathbb{Z}$?

Let $H \subseteq G$. Then the cosets of H form a group with the operation being the multiplication of sets. This group is denoted G/H.

EXAMPLE

- **1** Note that $n\mathbb{Z} \leq \mathbb{Z}$. What is $\mathbb{Z}/n\mathbb{Z}$?
- 2 Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternian group. Note that $\langle i \rangle = \{\pm 1, \pm i\} \subseteq G$. What is $G/\langle i \rangle$?

Let $H \subseteq G$. Then the cosets of H form a group with the operation being the multiplication of sets. This group is denoted G/H.

EXAMPLE

- **1** Note that $n\mathbb{Z} \leq \mathbb{Z}$. What is $\mathbb{Z}/n\mathbb{Z}$?
- **2** Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternian group. Note that $\langle i \rangle = \{\pm 1, \pm i\} \subseteq G$. What is $G/\langle i \rangle$?

Note

If $H \leq G$ and [G : H] = 2 then $H \leq G$.

Let $H \subseteq G$. The mapping $\phi : G \to G/H$ given by $\phi(a) = aH$ is an epimorphism.

Let $H \subseteq G$. The mapping $\phi : G \to G/H$ given by $\phi(a) = aH$ is an epimorphism.

THEOREM

For any homomorphism $\phi: G \to H$, $\ker(\phi) \subseteq G$.

Suppose G and H are groups with H a homomorphic image of G (that is there is an epimorphism $\phi: G \to H$). Then

 $H\cong G/\ker(\phi)$.

Suppose G and H are groups with H a homomorphic image of G (that is there is an epimorphism $\phi: G \to H$). Then

$$H \cong G/\ker(\phi)$$
.

EXAMPLE

Let
$$G = S_3$$
 and let $H = U_3 = \{\pm 1\}$.

Suppose G and H are groups with H a homomorphic image of G (that is there is an epimorphism $\phi: G \to H$). Then

$$H \cong G/\ker(\phi)$$
.

EXAMPLE

Let $G = S_3$ and let $H = U_3 = \{\pm 1\}$.

Define $\phi: G \to H$ by

$$\phi(e) = \phi((1,2,3)) = \phi((1,3,2)) = 1$$
 and

Suppose G and H are groups with H a homomorphic image of G (that is there is an epimorphism $\phi: G \to H$). Then

$$H \cong G/\ker(\phi)$$
.

EXAMPLE

Let $G = S_3$ and let $H = U_3 = \{\pm 1\}$.

Define $\phi: G \to H$ by

$$\phi(e) = \phi((1,2,3)) = \phi((1,3,2)) = 1$$
 and

$$\phi((1,2)) = \phi((1,3)) = \phi((2,3)) = -1.$$

Suppose G and H are groups with H a homomorphic image of G (that is there is an epimorphism $\phi: G \to H$). Then

$$H \cong G/\ker(\phi)$$
.

EXAMPLE

Let $G = S_3$ and let $H = U_3 = \{\pm 1\}$.

Define $\phi: G \to H$ by

$$\phi(e) = \phi((1,2,3)) = \phi((1,3,2)) = 1$$
 and

$$\phi((1,2)) = \phi((1,3)) = \phi((2,3)) = -1.$$

Show that ϕ is an epimorphism.

First we make a few observations. Let $\sigma=(1,2,3)$ and $\tau=(1,2)$. Then,

First we make a few observations. Let $\sigma=(1,2,3)$ and $\tau=(1,2)$. Then,

First we make a few observations. Let $\sigma = (1, 2, 3)$ and $\tau = (1, 2)$. Then,

- 2 Thus any element of S_3 can be written as $\sigma^j \tau^k$ with $j \in \{0,1,2\}$ and $k \in \{0,1\}$.

First we make a few observations. Let $\sigma=(1,2,3)$ and $\tau=(1,2)$. Then,

- 2 Thus any element of S_3 can be written as $\sigma^j \tau^k$ with $j \in \{0,1,2\}$ and $k \in \{0,1\}$.

First we make a few observations. Let $\sigma=(1,2,3)$ and $\tau=(1,2)$. Then,

- 2 Thus any element of S_3 can be written as $\sigma^j \tau^k$ with $j \in \{0,1,2\}$ and $k \in \{0,1\}$.
- **4** Note that $\phi(\sigma^j) = 1$ and $\phi(\sigma^j \tau) = -1$.

Now suppose that $x, y \in S_3$. Then,

Now suppose that $x,y\in\mathcal{S}_3$. Then, $x=\sigma^j\tau^k$ with $j\in\{0,1,2\}$ and $k\in\{0,1\}$, and $y=\sigma^m\tau^n$ with $m\in\{0,1,2\}$ and $n\in\{0,1\}$.

Now suppose that $x,y\in S_3$. Then, $x=\sigma^j\tau^k$ with $j\in\{0,1,2\}$ and $k\in\{0,1\}$, and

 $y = \sigma^m \tau^n \text{ with } m \in \{0, 1, 2\} \text{ and } n \in \{0, 1\}.$

Case 1: If k = 0, then we have

Now suppose that $x, y \in S_3$. Then, $x = \sigma^{j} \tau^{k}$ with $j \in \{0, 1, 2\}$ and $k \in \{0, 1\}$, and $y = \sigma^m \tau^n$ with $m \in \{0, 1, 2\}$ and $n \in \{0, 1\}$.

Case 1: If
$$k = 0$$
, then we have

$$\phi(xy) = \phi(\sigma^j \sigma^m \tau^n) = \phi(\sigma^{j+m} \tau^n) = (-1)^n$$

Now suppose that $x, y \in S_3$. Then, $x = \sigma^{j} \tau^{k}$ with $j \in \{0, 1, 2\}$ and $k \in \{0, 1\}$, and $y = \sigma^m \tau^n$ with $m \in \{0, 1, 2\}$ and $n \in \{0, 1\}$. Case 1: If k = 0, then we have

Case 1: If
$$k = 0$$
, then we have

$$\phi(xy) = \phi(\sigma^j \sigma^m \tau^n) = \phi(\sigma^{j+m} \tau^n) = (-1)^n$$

$$\phi(x)\phi(y) = \phi(\sigma^j)\phi(\sigma^m \tau^n) = 1 \cdot (-1)^n.$$

Now suppose that $x, y \in S_3$. Then,

$$x = \sigma^{j} \tau^{k}$$
 with $j \in \{0, 1, 2\}$ and $k \in \{0, 1\}$, and $y = \sigma^{m} \tau^{n}$ with $m \in \{0, 1, 2\}$ and $n \in \{0, 1\}$.

Case 1: If k = 0, then we have

$$\phi(xy) = \phi(\sigma^j \sigma^m \tau^n) = \phi(\sigma^{j+m} \tau^n) = (-1)^n$$

$$\phi(x)\phi(y) = \phi(\sigma^j)\phi(\sigma^m\tau^n) = 1 \cdot (-1)^n.$$

Case 2: If k = 1, then we have

Now suppose that $x, y \in S_3$. Then,

$$x = \sigma^{j} \tau^{k}$$
 with $j \in \{0, 1, 2\}$ and $k \in \{0, 1\}$, and $y = \sigma^{m} \tau^{n}$ with $m \in \{0, 1, 2\}$ and $n \in \{0, 1\}$.

Case 1: If k = 0, then we have

$$\phi(xy) = \phi(\sigma^j \sigma^m \tau^n) = \phi(\sigma^{j+m} \tau^n) = (-1)^n$$

$$\phi(x)\phi(y) = \phi(\sigma^j)\phi(\sigma^m\tau^n) = 1 \cdot (-1)^n.$$

Case 2: If k = 1, then we have

$$\phi(xy) = \phi(\sigma^j \tau \sigma^m \tau^n) = \phi(\sigma^{j-m} \tau^{n+1}) = (-1)^{n+1}$$

Now suppose that $x, y \in S_3$. Then,

$$x = \sigma^{j} \tau^{k}$$
 with $j \in \{0, 1, 2\}$ and $k \in \{0, 1\}$, and $y = \sigma^{m} \tau^{n}$ with $m \in \{0, 1, 2\}$ and $n \in \{0, 1\}$.

Case 1: If
$$k = 0$$
, then we have

$$\phi(xy) = \phi(\sigma^j \sigma^m \tau^n) = \phi(\sigma^{j+m} \tau^n) = (-1)^n$$

$$\phi(x)\phi(y) = \phi(\sigma^j)\phi(\sigma^m\tau^n) = 1 \cdot (-1)^n.$$

Case 2: If k = 1, then we have

$$\phi(xy) = \phi(\sigma^j \tau \sigma^m \tau^n) = \phi(\sigma^{j-m} \tau^{n+1}) = (-1)^{n+1}$$

$$\phi(x)\phi(y) = \phi(\sigma^j \tau)\phi(\sigma^m \tau^n) = -1 \cdot (-1)^n = (-1)^{n+1}.$$

Now suppose that $x, y \in S_3$. Then,

$$x = \sigma^{j} \tau^{k}$$
 with $j \in \{0, 1, 2\}$ and $k \in \{0, 1\}$, and

$$y = \sigma^m \tau^n$$
 with $m \in \{0, 1, 2\}$ and $n \in \{0, 1\}$.

Case 1: If k = 0, then we have

$$\phi(xy) = \phi(\sigma^j \sigma^m \tau^n) = \phi(\sigma^{j+m} \tau^n) = (-1)^n$$

$$\phi(x)\phi(y) = \phi(\sigma^j)\phi(\sigma^m \tau^n) = 1 \cdot (-1)^n.$$

Case 2: If k = 1, then we have

$$\phi(xy) = \phi(\sigma^j \tau \sigma^m \tau^n) = \phi(\sigma^{j-m} \tau^{n+1}) = (-1)^{n+1}$$

$$\phi(x)\phi(y) = \phi(\sigma^j \tau)\phi(\sigma^m \tau^n) = -1 \cdot (-1)^n = (-1)^{n+1}.$$

Thus in either case $\phi(xy) = \phi(x)\phi(y)$ and ϕ is a homomorphism.

Now suppose that $x, y \in S_3$. Then,

$$x = \sigma^{j} \tau^{k}$$
 with $j \in \{0, 1, 2\}$ and $k \in \{0, 1\}$, and

$$y = \sigma^m \tau^n \text{ with } m \in \{0, 1, 2\} \text{ and } n \in \{0, 1\}.$$

Case 1: If k = 0, then we have

$$\phi(xy) = \phi(\sigma^j \sigma^m \tau^n) = \phi(\sigma^{j+m} \tau^n) = (-1)^n$$

$$\phi(x)\phi(y) = \phi(\sigma^j)\phi(\sigma^m \tau^n) = 1 \cdot (-1)^n.$$

Case 2: If k = 1, then we have

$$\phi(xy) = \phi(\sigma^j \tau \sigma^m \tau^n) = \phi(\sigma^{j-m} \tau^{n+1}) = (-1)^{n+1}$$

$$\phi(x)\phi(y) = \phi(\sigma^{j}\tau)\phi(\sigma^{m}\tau^{n}) = -1 \cdot (-1)^{n} = (-1)^{n+1}.$$

Thus in either case $\phi(xy) = \phi(x)\phi(y)$ and ϕ is a homomorphism.

From our definition of ϕ , it is clear that ϕ is onto. So, ϕ is an epimorphism.

In our previous example, we have $\ker(\phi) = <\sigma>$.

In our previous example, we have $\ker(\phi) = <\sigma>$. So, $G/\ker(\phi) \cong U_3$.

In our previous example, we have $ker(\phi) = <\sigma>$.

So,
$$G/\ker(\phi) \cong U_3$$
.

Letting $K = \langle \sigma \rangle$, we have that $G/K = \{K, \tau K\}$.

In our previous example, we have $\ker(\phi) = <\sigma>$.

So, $G/\ker(\phi) \cong U_3$.

Letting $K = \langle \sigma \rangle$, we have that $G/K = \{K, \tau K\}$.

Using ϕ we can define an isomorphism $\theta: G/K \to U_3$ by

In our previous example, we have $\ker(\phi) = <\sigma>$.

So,
$$G/\ker(\phi) \cong U_3$$
.

Letting
$$K = \langle \sigma \rangle$$
, we have that $G/K = \{K, \tau K\}$.

Using ϕ we can define an isomorphism $\theta: G/K \to U_3$ by

$$heta(\mathsf{K}) = heta(\mathsf{e}\mathsf{K}) = \phi(\mathsf{e}) = 1$$
 and

Example (continued)

In our previous example, we have $ker(\phi) = <\sigma>$.

So,
$$G/\ker(\phi) \cong U_3$$
.

Letting
$$K = \langle \sigma \rangle$$
, we have that $G/K = \{K, \tau K\}$.

Using ϕ we can define an isomorphism $\theta: G/K \to U_3$ by

$$heta(\mathsf{K}) = heta(e\mathsf{K}) = \phi(e) = 1$$
 and

$$\theta(\tau K) = \phi(\tau) = -1.$$