MTHSC 412 Section 4.6 – Quotient Groups

Kevin James

Kevin James MTHSC 412 Section 4.6 – Quotient Groups

→ < E → < E →</p>

Theorem

Let $H \leq G$. Then the cosets of H form a group with the operation being the multiplication of sets. This group is denoted G/H.

EXAMPLE

- **1** Note that $n\mathbb{Z} \leq \mathbb{Z}$. What is $\mathbb{Z}/n\mathbb{Z}$?
- ② Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternian group. Note that $\langle i \rangle = \{\pm 1, \pm i\} \subseteq G$. What is $G / \langle i \rangle$?

Note

If $H \leq G$ and [G:H] = 2 then $H \leq G$.

イロン イヨン イヨン イヨン

Theorem

Let $H \trianglelefteq G$. The mapping $\phi : G \to G/H$ given by $\phi(a) = aH$ is an epimorphism.

Theorem

For any homomorphism $\phi : G \to H$, ker $(\phi) \trianglelefteq G$.

・ロン ・回 と ・ 回 と ・ 回 と

3

THEOREM (FUNDAMENTAL THEOREM OF HOMOMORPHISMS)

Suppose G and H are groups with H a homomorphic image of G (that is there is an epimorphism $\phi : G \to H$). Then

 $H \cong G/\ker(\phi).$

EXAMPLE

Let
$$G = S_3$$
 and let $H = U_3 = \{\pm 1\}$.
Define $\phi : G \to H$ by
 $\phi(e) = \phi((1, 2, 3)) = \phi((1, 3, 2)) = 1$ and
 $\phi((1, 2)) = \phi((1, 3)) = \phi((2, 3)) = -1$.
Show that ϕ is an epimorphism.

| 4 回 2 4 U = 2 4 U =

EXAMPLE (SOLUTION)

First we make a few observations. Let $\sigma = (1, 2, 3)$ and $\tau = (1, 2)$. Then,

2 Thus any element of S_3 can be written as $\sigma^j \tau^k$ with $j \in \{0, 1, 2\}$ and $k \in \{0, 1\}$.

$$\mathbf{3} \ \tau \sigma^i = \sigma^{-i} \tau.$$

(4) Note that $\phi(\sigma^j) = 1$ and $\phi(\sigma^j \tau) = -1$.

伺い イヨト イヨト

SOLUTION CONTINUED

Now suppose that $x, y \in S_3$. Then, $x = \sigma^j \tau^k$ with $i \in \{0, 1, 2\}$ and $k \in \{0, 1\}$, and $y = \sigma^m \tau^n$ with $m \in \{0, 1, 2\}$ and $n \in \{0, 1\}$. **Case 1:** If k = 0, then we have $\phi(xv) = \phi(\sigma^{j}\sigma^{m}\tau^{n}) = \phi(\sigma^{j+m}\tau^{n}) = (-1)^{n}$ $\phi(\mathbf{x})\phi(\mathbf{y}) = \phi(\sigma^j)\phi(\sigma^m\tau^n) = 1 \cdot (-1)^n.$ **Case 2:** If k = 1, then we have $\phi(xy) = \phi(\sigma^j \tau \sigma^m \tau^n) = \phi(\sigma^{j-m} \tau^{n+1}) = (-1)^{n+1}$ $\phi(x)\phi(y) = \phi(\sigma^{j}\tau)\phi(\sigma^{m}\tau^{n}) = -1 \cdot (-1)^{n} = (-1)^{n+1}.$ Thus in either case $\phi(xy) = \phi(x)\phi(y)$ and ϕ is a homomorphism. From our definition of ϕ , it is clear that ϕ is onto. So, ϕ is an epimorphism.

▲帰▶ ★ 国▶ ★ 国▶

3

EXAMPLE (CONTINUED)

In our previous example, we have $\ker(\phi) = \langle \sigma \rangle$. So, $G/\ker(\phi) \cong U_3$. Letting $K = \langle \sigma \rangle$, we have that $G/K = \{K, \tau K\}$. Using ϕ we can define an isomorphism $\theta : G/K \to U_3$ by $\theta(K) = \theta(eK) = \phi(e) = 1$ and $\theta(\tau K) = \phi(\tau) = -1$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3