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Definition

A set R together with two binary operations + and ∗ is a ring if

1 (R, +) is an abelian group.

2 R is closed under ∗ and ∗ is associative.

3 The following distributive laws hold for all x , y , z ∈ R.

1 x(y+z) = xy + xz.
2 (x+y)z = xz + yz.

Note

Some authors also include the requirement that there be an identity
with respect to ∗. We will call such a ring a ring with unity.

Example

1 Z, R, Q and C are all rings.

2 Mn(R) is a ring.

3 In fact if R is a ring then Mn(R) is a ring.
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Definition

Suppose that S ⊆ R where (R, +, ∗) is a ring. If (S , +, ∗) is also a
ring then we say that S is a subring of R.

Theorem

Suppose that (R, +, ∗) is a ring and that S ⊆ R. Then S is a
subring of R if the following conditions hold.

1 S 6= ∅.
2 For all x , y ∈ S, (x + y), xy ∈ S.

3 For all x ∈ S, −x ∈ S.

Theorem

Suppose that (R, +, ∗) is a ring and that S ⊆ R. Then S is a
subring of R if the following conditions hold.

1 S 6= ∅.
2 For all x , y ∈ S, (x − y), xy ∈ S.
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Example

1 R = {a + b
√

2 | a, b ∈ R} is a subring of R.

2 Zn is a finite ring.

3 Let U be a nonempty set. Then P(U) is a ring with
operations A + B = (A ∪ B)− (A ∩ B) and AB = A ∩ B.
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Definition

Let R be a ring. If there exists an element e ∈ R such that
x ∗ e = e ∗ x = x for all x ∈ R, then we cal e a unity or
multiplicative identity and say that R is a ring with unity. If ∗ is
commutative then we say that R is a commutative ring.

Example

1 Z is a commutative ring with unity.

2 E = {2k | k ∈ Z} is a commutative ring without unity.

3 Mn(R) is a non-commutative ring with unity.

4 Mn(E ) is a non-commutative ring without unity.
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Theorem

If R is a ring with unity then the unity is unique.

Definition

Let R be a ring with unity e and let a ∈ R. If there exists x ∈ R
such that ax = xa = e then x is a multiplicative inverse of a and a
is called a unit or an invertible element in R.

Theorem

Suppose that R is a ring with a unity e. If a ∈ R has a
multiplicative inverse then that inverse is unique and will be
denoted a−1.
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Other facts that we know about rings because of their group
structure under + are:

1 The zero element in R is unique.

2 For each x ∈ R there is a unique −x .

3 For each x ∈ R, −(−x) = x .

4 For any x , y ∈ R, −(x + y) = −y − x .

5 For a, x , y ∈ R, a + x = a + y ⇒ x = y .
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Theorem

If R is a ring and a ∈ R then a · 0 = 0 · a = 0.

Definition

Let R be a ring and let a ∈ R. If a 6= 0 and if there is 0 6= b ∈ R
such that ab = 0 or ba = 0 then a is called a zero divisor.

Example

5 is a zero divisor in Z10 because 2 ∗ 5 = 0 in Z10.
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Theorem

Suppose x , y , z ∈ R then the following are true.

1 (−x)y = −(xy) = x(−y).

2 (−x)(−y) = xy.

3 x(y − z) = xy − xz.

4 (x − y)z = xz − yz.
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