MTHSC 412 Section 5.1 – Rings Kevin James A set R together with two binary operations + and * is a *ring* if - (R,+) is an abelian group. - 2 R is closed under * and * is associative. - **3** The following distributive laws hold for all $x, y, z \in R$. - **2** (x+y)z = xz + yz. A set R together with two binary operations + and * is a *ring* if - (R,+) is an abelian group. - R is closed under * and * is associative. - **3** The following distributive laws hold for all $x, y, z \in R$. - 1 x(y+z) = xy + xz. - ② (x+y)z = xz + yz. ## Note Some authors also include the requirement that there be an identity with respect to *. We will call such a ring a ring with unity. A set R together with two binary operations + and * is a *ring* if - (R,+) is an abelian group. - R is closed under * and * is associative. - **3** The following distributive laws hold for all $x, y, z \in R$. - 2 (x+y)z = xz + yz. ## Note Some authors also include the requirement that there be an identity with respect to *. We will call such a ring a ring with unity. #### EXAMPLE - lacktriangledown \mathbb{Z} , \mathbb{R} , \mathbb{Q} and \mathbb{C} are all rings. - \mathfrak{Q} $M_n(\mathbb{R})$ is a ring. - 3 In fact if R is a ring then $M_n(R)$ is a ring. Suppose that $S \subseteq R$ where (R, +, *) is a ring. If (S, +, *) is also a ring then we say that S is a subring of R. Suppose that $S \subseteq R$ where (R, +, *) is a ring. If (S, +, *) is also a ring then we say that S is a subring of R. ## THEOREM Suppose that (R, +, *) is a ring and that $S \subseteq R$. Then S is a subring of R if the following conditions hold. - $\mathbf{0}$ $S \neq \emptyset$. - **2** For all $x, y \in S$, $(x + y), xy \in S$. - **3** For all $x \in S$, $-x \in S$. Suppose that $S \subseteq R$ where (R, +, *) is a ring. If (S, +, *) is also a ring then we say that S is a subring of R. ## THEOREM Suppose that (R, +, *) is a ring and that $S \subseteq R$. Then S is a subring of R if the following conditions hold. - $\mathbf{0}$ $S \neq \emptyset$. - 2 For all $x, y \in S$, (x + y), $xy \in S$. - **3** For all $x \in S$, $-x \in S$. ## THEOREM Suppose that (R, +, *) is a ring and that $S \subseteq R$. Then S is a subring of R if the following conditions hold. - $\mathbf{0}$ $S \neq \emptyset$. - 2 For all $x, y \in S$, $(x y), xy \in S$. #### EXAMPLE - **1** $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{R}\}$ is a subring of \mathbb{R} . - $2 \mathbb{Z}_n$ is a finite ring. - **3** Let U be a nonempty set. Then $\mathcal{P}(U)$ is a ring with operations $A+B=(A\cup B)-(A\cap B)$ and $AB=A\cap B$. Let R be a ring. If there exists an element $e \in R$ such that x*e=e*x=x for all $x \in R$, then we cal e a unity or multiplicative identity and say that R is a ring with unity. If * is commutative then we say that R is a commutative ring. Let R be a ring. If there exists an element $e \in R$ such that x*e=e*x=x for all $x \in R$, then we cal e a unity or multiplicative identity and say that R is a ring with unity. If * is commutative then we say that R is a commutative ring. #### EXAMPLE - $\mathbf{0}$ \mathbb{Z} is a commutative ring with unity. - **2** $E = \{2k \mid k \in \mathbb{Z}\}$ is a commutative ring without unity. - **3** $M_n(\mathbb{R})$ is a non-commutative ring with unity. - **4** $M_n(E)$ is a non-commutative ring without unity. If R is a ring with unity then the unity is unique. If R is a ring with unity then the unity is unique. ## DEFINITION Let R be a ring with unity e and let $a \in R$. If there exists $x \in R$ such that ax = xa = e then x is a multiplicative inverse of a and a is called a *unit* or an *invertible element* in R. If R is a ring with unity then the unity is unique. ## DEFINITION Let R be a ring with unity e and let $a \in R$. If there exists $x \in R$ such that ax = xa = e then x is a multiplicative inverse of a and a is called a *unit* or an invertible element in R. #### THEOREM Suppose that R is a ring with a unity e. If $a \in R$ has a multiplicative inverse then that inverse is unique and will be denoted a^{-1} . Other facts that we know about rings because of their group structure under + are: - 1 The zero element in *R* is unique. - 2 For each $x \in R$ there is a unique -x. - **3** For each $x \in R$, -(-x) = x. - **4** For any $x, y \in R$, -(x + y) = -y x. - $5 \text{ For } a, x, y \in R, \ a + x = a + y \Rightarrow x = y.$ If R is a ring and $a \in R$ then $a \cdot 0 = 0 \cdot a = 0$. If R is a ring and $a \in R$ then $a \cdot 0 = 0 \cdot a = 0$. ## DEFINITION Let R be a ring and let $a \in R$. If $a \neq 0$ and if there is $0 \neq b \in R$ such that ab = 0 or ba = 0 then a is called a zero divisor. If R is a ring and $a \in R$ then $a \cdot 0 = 0 \cdot a = 0$. ## DEFINITION Let R be a ring and let $a \in R$. If $a \neq 0$ and if there is $0 \neq b \in R$ such that ab = 0 or ba = 0 then a is called a zero divisor. #### EXAMPLE 5 is a zero divisor in \mathbb{Z}_{10} because 2*5=0 in $\mathbb{Z}_{10}.$ Suppose $x, y, z \in R$ then the following are true. - (-x)y = -(xy) = x(-y). - (-x)(-y) = xy. - (y-z) = xy xz.