# MTHSC 412 Section 5.1 – Rings

Kevin James

A set R together with two binary operations + and \* is a *ring* if

- (R,+) is an abelian group.
- 2 R is closed under \* and \* is associative.
- **3** The following distributive laws hold for all  $x, y, z \in R$ .

  - **2** (x+y)z = xz + yz.

A set R together with two binary operations + and \* is a *ring* if

- (R,+) is an abelian group.
- R is closed under \* and \* is associative.
- **3** The following distributive laws hold for all  $x, y, z \in R$ .
  - 1 x(y+z) = xy + xz.
  - ② (x+y)z = xz + yz.

## Note

Some authors also include the requirement that there be an identity with respect to \*. We will call such a ring a ring with unity.

A set R together with two binary operations + and \* is a *ring* if

- (R,+) is an abelian group.
- R is closed under \* and \* is associative.
- **3** The following distributive laws hold for all  $x, y, z \in R$ .

  - 2 (x+y)z = xz + yz.

## Note

Some authors also include the requirement that there be an identity with respect to \*. We will call such a ring a ring with unity.

#### EXAMPLE

- lacktriangledown  $\mathbb{Z}$ ,  $\mathbb{R}$ ,  $\mathbb{Q}$  and  $\mathbb{C}$  are all rings.
- $\mathfrak{Q}$   $M_n(\mathbb{R})$  is a ring.
- 3 In fact if R is a ring then  $M_n(R)$  is a ring.



Suppose that  $S \subseteq R$  where (R, +, \*) is a ring. If (S, +, \*) is also a ring then we say that S is a subring of R.

Suppose that  $S \subseteq R$  where (R, +, \*) is a ring. If (S, +, \*) is also a ring then we say that S is a subring of R.

## THEOREM

Suppose that (R, +, \*) is a ring and that  $S \subseteq R$ . Then S is a subring of R if the following conditions hold.

- $\mathbf{0}$   $S \neq \emptyset$ .
- **2** For all  $x, y \in S$ ,  $(x + y), xy \in S$ .
- **3** For all  $x \in S$ ,  $-x \in S$ .

Suppose that  $S \subseteq R$  where (R, +, \*) is a ring. If (S, +, \*) is also a ring then we say that S is a subring of R.

## THEOREM

Suppose that (R, +, \*) is a ring and that  $S \subseteq R$ . Then S is a subring of R if the following conditions hold.

- $\mathbf{0}$   $S \neq \emptyset$ .
- 2 For all  $x, y \in S$ , (x + y),  $xy \in S$ .
- **3** For all  $x \in S$ ,  $-x \in S$ .

## THEOREM

Suppose that (R, +, \*) is a ring and that  $S \subseteq R$ . Then S is a subring of R if the following conditions hold.

- $\mathbf{0}$   $S \neq \emptyset$ .
- 2 For all  $x, y \in S$ ,  $(x y), xy \in S$ .



#### EXAMPLE

- **1**  $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{R}\}$  is a subring of  $\mathbb{R}$ .
- $2 \mathbb{Z}_n$  is a finite ring.
- **3** Let U be a nonempty set. Then  $\mathcal{P}(U)$  is a ring with operations  $A+B=(A\cup B)-(A\cap B)$  and  $AB=A\cap B$ .

Let R be a ring. If there exists an element  $e \in R$  such that x\*e=e\*x=x for all  $x \in R$ , then we cal e a unity or multiplicative identity and say that R is a ring with unity. If \* is commutative then we say that R is a commutative ring.

Let R be a ring. If there exists an element  $e \in R$  such that x\*e=e\*x=x for all  $x \in R$ , then we cal e a unity or multiplicative identity and say that R is a ring with unity. If \* is commutative then we say that R is a commutative ring.

#### EXAMPLE

- $\mathbf{0}$   $\mathbb{Z}$  is a commutative ring with unity.
- **2**  $E = \{2k \mid k \in \mathbb{Z}\}$  is a commutative ring without unity.
- **3**  $M_n(\mathbb{R})$  is a non-commutative ring with unity.
- **4**  $M_n(E)$  is a non-commutative ring without unity.

If R is a ring with unity then the unity is unique.

If R is a ring with unity then the unity is unique.

## DEFINITION

Let R be a ring with unity e and let  $a \in R$ . If there exists  $x \in R$  such that ax = xa = e then x is a multiplicative inverse of a and a is called a *unit* or an *invertible element* in R.

If R is a ring with unity then the unity is unique.

## DEFINITION

Let R be a ring with unity e and let  $a \in R$ . If there exists  $x \in R$  such that ax = xa = e then x is a multiplicative inverse of a and a is called a *unit* or an invertible element in R.

#### THEOREM

Suppose that R is a ring with a unity e. If  $a \in R$  has a multiplicative inverse then that inverse is unique and will be denoted  $a^{-1}$ .

Other facts that we know about rings because of their group structure under + are:

- 1 The zero element in *R* is unique.
- 2 For each  $x \in R$  there is a unique -x.
- **3** For each  $x \in R$ , -(-x) = x.
- **4** For any  $x, y \in R$ , -(x + y) = -y x.
- $5 \text{ For } a, x, y \in R, \ a + x = a + y \Rightarrow x = y.$

If R is a ring and  $a \in R$  then  $a \cdot 0 = 0 \cdot a = 0$ .

If R is a ring and  $a \in R$  then  $a \cdot 0 = 0 \cdot a = 0$ .

## DEFINITION

Let R be a ring and let  $a \in R$ . If  $a \neq 0$  and if there is  $0 \neq b \in R$  such that ab = 0 or ba = 0 then a is called a zero divisor.

If R is a ring and  $a \in R$  then  $a \cdot 0 = 0 \cdot a = 0$ .

## DEFINITION

Let R be a ring and let  $a \in R$ . If  $a \neq 0$  and if there is  $0 \neq b \in R$  such that ab = 0 or ba = 0 then a is called a zero divisor.

#### EXAMPLE

5 is a zero divisor in  $\mathbb{Z}_{10}$  because 2\*5=0 in  $\mathbb{Z}_{10}.$ 

Suppose  $x, y, z \in R$  then the following are true.

- (-x)y = -(xy) = x(-y).
- (-x)(-y) = xy.
- (y-z) = xy xz.