MTHSC 412 Section 5.1 – Rings

Kevin James

Kevin James MTHSC 412 Section 5.1 – Rings

・ロト ・回ト ・ヨト

★ 문 ▶ 문

Definition

A set R together with two binary operations + and * is a *ring* if

- (R, +) is an abelian group.
- **2** R is closed under * and * is associative.
- **3** The following distributive laws hold for all $x, y, z \in R$.

$$1 x(y+z) = xy + xz.$$

2 (x+y)z = xz + yz.

Note

Some authors also include the requirement that there be an identity with respect to *. We will call such a ring a ring with unity.

Example

- **1** \mathbb{Z} , \mathbb{R} , \mathbb{Q} and \mathbb{C} are all rings.
- **2** $M_n(\mathbb{R})$ is a ring.
- **8** In fact if R is a ring then $M_n(R)$ is a ring.

Definition

Suppose that $S \subseteq R$ where (R, +, *) is a ring. If (S, +, *) is also a ring then we say that S is a subring of R.

Theorem

Suppose that (R, +, *) is a ring and that $S \subseteq R$. Then S is a subring of R if the following conditions hold.

Theorem

Suppose that (R, +, *) is a ring and that $S \subseteq R$. Then S is a subring of R if the following conditions hold.

EXAMPLE

- **1** $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{R}\}$ is a subring of \mathbb{R} .
- **2** \mathbb{Z}_n is a finite ring.
- **3** Let U be a nonempty set. Then $\mathcal{P}(U)$ is a ring with operations $A + B = (A \cup B) (A \cap B)$ and $AB = A \cap B$.

▲圖▶ ▲屋▶ ▲屋▶

2

DEFINITION

Let *R* be a ring. If there exists an element $e \in R$ such that x * e = e * x = x for all $x \in R$, then we cal *e* a *unity or multiplicative identity* and say that *R* is a *ring with unity*. If * is commutative then we say that *R* is a *commutative ring*.

EXAMPLE

- **1** \mathbb{Z} is a commutative ring with unity.
- **2** $E = \{2k \mid k \in \mathbb{Z}\}$ is a commutative ring without unity.
- **3** $M_n(\mathbb{R})$ is a non-commutative ring with unity.
- 4 $M_n(E)$ is a non-commutative ring without unity.

・ロン ・回と ・ヨン ・ヨン

Theorem

If R is a ring with unity then the unity is unique.

DEFINITION

Let *R* be a ring with unity *e* and let $a \in R$. If there exists $x \in R$ such that ax = xa = e then *x* is a *multiplicative inverse* of *a* and *a* is called a *unit* or an *invertible element* in *R*.

Theorem

Suppose that R is a ring with a unity e. If $a \in R$ has a multiplicative inverse then that inverse is unique and will be denoted a^{-1} .

- < ≣ > -

Other facts that we know about rings because of their group structure under + are:

- **1** The zero element in *R* is unique.
- **2** For each $x \in R$ there is a unique -x.

8 For each
$$x \in R$$
, $-(-x) = x$.

4 For any
$$x, y \in R$$
, $-(x + y) = -y - x$.

6 For
$$a, x, y \in R$$
, $a + x = a + y \Rightarrow x = y$.

Theorem

If R is a ring and $a \in R$ then $a \cdot 0 = 0 \cdot a = 0$.

DEFINITION

Let *R* be a ring and let $a \in R$. If $a \neq 0$ and if there is $0 \neq b \in R$ such that ab = 0 or ba = 0 then *a* is called a *zero divisor*.

EXAMPLE

5 is a zero divisor in \mathbb{Z}_{10} because 2 * 5 = 0 in \mathbb{Z}_{10} .

< 三 ▶ ……

Theorem

Suppose $x, y, z \in R$ then the following are true.

$$(-x)y = -(xy) = x(-y)$$

(-x)(-y) = xy.
(x - y) = xy - xz.
(x - y)z = xz - yz.

・ロン ・回 と ・ ヨ と ・ ヨ と

æ