# MTHSC 412 Section 5.2 – Integral Domains and Fields

Kevin James

A ring *D* is an *integral domain* if the following conditions hold.

- ① D is commutative.
- 2 D has a unity  $1 \neq 0$ .
- 3 D has no zero divisors.

A ring *D* is an *integral domain* if the following conditions hold.

- ① *D* is commutative.
- 2 D has a unity  $1 \neq 0$ .
- 3 D has no zero divisors.

# EXAMPLE

 $\mathbf{1}$   $\mathbb{Z}$  is an integral domain.

A ring *D* is an *integral domain* if the following conditions hold.

- ① D is commutative.
- 2 D has a unity  $1 \neq 0$ .
- 3 D has no zero divisors.

## EXAMPLE

- $\mathbf{1}$   $\mathbb{Z}$  is an integral domain.
- $2 \mathbb{Z}_{10}$  is not an integral domain, since it has zero divisors.

For n > 1,  $\mathbb{Z}_n$  is an integral domain if and only if n is prime.

For n > 1,  $\mathbb{Z}_n$  is an integral domain if and only if n is prime.

# THEOREM (CANCELLATION LAW FOR MULTIPLICATION)

Suppose that D is an integral domain and that  $a, b, c \in D$ . Then  $ab = ac \Rightarrow b = c$ .

A ring F is a *field* if the following conditions hold.

- $\bullet$  F is a commutative ring.
- **2** F has a unity  $1 \neq 0$

A ring F is a *field* if the following conditions hold.

- $oldsymbol{0}$  F is a commutative ring.
- **2** F has a unity  $1 \neq 0$
- $\odot$  Every nonzero element of F has a multiplicative inverse.

# DEFINITION (EQUIVALENT DEFINITION OF A FIELD)

A set F together with 2 binary operations + and  $\cdot$  is a field if the following conditions hold.

- (F, +) is an abelian group with identity denoted by 0.
- $([F \{0\}], \cdot)$  is an abelian group with identity denoted by 1.
- 3 x(y+z) = xy + xz for all  $x, y, z \in F$ .

Every field is an integral domain.

Every finite integral domain is a field.

Every finite integral domain is a field.

#### THEOREM

 $\mathbb{Z}_n$  is a field if and only if n is prime.

## Theorem

Every finite integral domain is a field.

#### THEOREM

 $\mathbb{Z}_n$  is a field if and only if n is prime.

# EXAMPLE

Note that  $M_n(\mathbb{Z})$ ,  $M_n(\mathbb{Q})$ ,  $M_n(\mathbb{R})$  and  $M_n(\mathbb{C})$  are not integral domains since

$$\left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right] \cdot \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right].$$