MTHSC 412 Section 5.2 – Integral Domains and Fields

Kevin James

Kevin James MTHSC 412 Section 5.2 – Integral Domains and Fields

(4回) (1日) (日)

3

DEFINITION

A ring D is an *integral domain* if the following conditions hold.

- 1 D is commutative.
- **2** *D* has a unity $1 \neq 0$.
- **3** *D* has no zero divisors.

EXAMPLE

1 \mathbb{Z} is an integral domain.

2 \mathbb{Z}_{10} is not an integral domain, since it has zero divisors.

THEOREM

For n > 1, \mathbb{Z}_n is an integral domain if and only if n is prime.

THEOREM (CANCELLATION LAW FOR MULTIPLICATION)

Suppose that D is an integral domain and that $a, b, c \in D$. Then $ab = ac \Rightarrow b = c$.

イロン イヨン イヨン イヨン

Definition

A ring F is a *field* if the following conditions hold.

- **1** *F* is a commutative ring.
- **2** F has a unity $1 \neq 0$
- $\mathbf{8}$ Every nonzero element of F has a multiplicative inverse.

DEFINITION (EQUIVALENT DEFINITION OF A FIELD)

A set F together with 2 binary operations + and \cdot is a field if the following conditions hold.

- (F, +) is an abelian group with identity denoted by 0.
- **2** $([F \{0\}], \cdot)$ is an abelian group with identity denoted by 1.
- $3 x(y+z) = xy + xz \text{ for all } x, y, z \in F.$

(4月) (4日) (4日)

THEOREM

Every field is an integral domain.

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem

Every finite integral domain is a field.

Theorem

 \mathbb{Z}_n is a field if and only if n is prime.

EXAMPLE

Note that $M_n(\mathbb{Z})$, $M_n(\mathbb{Q})$, $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ are not integral domains since

$$\left[\begin{array}{rrr}1&0\\1&0\end{array}\right]\cdot\left[\begin{array}{rrr}0&0\\1&1\end{array}\right]=\left[\begin{array}{rrr}0&0\\0&0\end{array}\right].$$

イロト イヨト イヨト イヨト

3