MTHSC 412 Section 6.1 – Ideals and Quotient Rings

Kevin James

Kevin James MTHSC 412 Section 6.1 – Ideals and Quotient Rings

回 と く ヨ と く ヨ と

æ

DEFINITION

A subring *I* of a ring *R* is an ideal in *R* if for all $x \in I$ and $r \in R$, $xr, rx \in I$. If *I* is an ideal of *R*, we will write $I \trianglelefteq R$.

Note

If R is any ring, then $\{0\}$ and R are ideals of R. These are referred to as *trivial ideals*.

|| (同) || (三) (=)

Example

Note that for $m \geq 1$, $m\mathbb{Z} \trianglelefteq \mathbb{Z}$.

Theorem

Suppose that $I \subseteq R$ where R is a ring. Then $I \trianglelefteq R$ if the following are true.

 $I \neq \emptyset$. $x, y \in I \Rightarrow (x + y) \in I$. $x \in I \Rightarrow -x \in I$. $x \in I; r \in R \Rightarrow xr, rx \in I$.

(4月) イヨト イヨト

3

EXAMPLE

Note that
$$S = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\}$$
 is a ring.
Let $I = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b, \in \mathbb{Z} \right\}$.
Show that $I \leq S$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

DEFINITION

Suppose that *R* is a commutative ring with 1 and that $a \in R$. The *principal ideal generated by a* is defined by

$$< a >= \{ar \mid r \in R\}$$

Theorem

Suppose that R is a commutative ring with 1 and $a \in R$. Then $\langle a \rangle \trianglelefteq R$.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Theorem (\mathbb{Z} is a Principal Ideal Domain)

In the ring \mathbb{Z} , every ideal is principal.

□ > < E > < E > -

æ

DEFINITION

Suppose that R is a ring and $I \leq R$. Then we consider the cosets

$$r+I = \{r+k \mid k \in I\}$$

and define addition and multiplication of these cosets as follows.

$$(a+I) + (b+I) = (a+b) + I;$$
 $(a+I)(b+I) = ab + I.$

Theorem

Suppose that R is a ring and $I \subseteq R$. Then $R/I = \{r+I \mid r \in R\}$ is a ring with addition and multiplication defined as above. R/I is called the quotient ring of R by I.

(4月) (4日) (4日)

EXAMPLE

Consider $\mathbb{Z}/4\mathbb{Z}$.

Kevin James MTHSC 412 Section 6.1 – Ideals and Quotient Rings

æ