MTHSC 412 SECTION 6.2 – RING HOMOMORPHISMS

Kevin James

If R and S are rings a map $\phi: R \to S$ is a *ring homomorphism* if for all $m, n \in R$,

- **1** $\phi(m+n) = \phi(m) + \phi(n)$ and,
- $\phi(mn) = \phi(m)\phi(n).$

We also define ring monomorphisms, epimorphisms, isomorphisms, endomorphisms and automorphisms as with groups.

If R and S are rings a map $\phi:R\to S$ is a ring homomorphism if for all $m,n\in R$,

- **1** $\phi(m+n) = \phi(m) + \phi(n)$ and,
- $\phi(mn) = \phi(m)\phi(n).$

We also define ring monomorphisms, epimorphisms, isomorphisms, endomorphisms and automorphisms as with groups.

EXAMPLE

Define $\phi: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ by $\phi(x) = 2x$. Check that ϕ is a ring endomorphism. Is it injective, surjective?

Suppose that $\phi:R\to S$ is a ring homomorphism. Then,

- $\phi(0) = 0.$
- $\phi(-r) = -\phi(r).$

Suppose that $\phi: R \to S$ is a ring homomorphism. Then,

- $\phi(0) = 0.$
- **2** $\phi(-r) = -\phi(r)$.

THEOREM

Suppose that $\phi: R \to S$ is a ring homomorphism.

- **1** If T is a subring of R then $\phi(T)$ is a subring of S.
- 2 If V is a subring of S then $\phi^{-1}(V)$ is a subring of R.

Suppose that $\phi:R\to S$ is a ring homomorphism. Then we define the *kernel* of ϕ as

$$\ker(\phi) = \{r \in R \mid \phi(r) = 0\}.$$

Suppose that $\phi:R\to S$ is a ring homomorphism. Then we define the *kernel* of ϕ as

$$\ker(\phi) = \{r \in R \mid \phi(r) = 0\}.$$

THEOREM

Suppose that $\phi: R \to S$ is a ring homomorphism. Then $\ker(\phi) \leq R$. and $\ker(\phi) = \{0\}$ if and only if ϕ is injective.

Suppose that $I \subseteq R$. Define $\theta : R \to R/I$ by $\theta(r) = r + I$. Then θ is an epimorphism and $\ker(\theta) = I$.

Suppose that $I \leq R$. Define $\theta : R \to R/I$ by $\theta(r) = r + I$. Then θ is an epimorphism and $\ker(\theta) = I$.

THEOREM

Suppose that $\phi: R \to S$ is an epimorphism. Then $S \cong R/\ker(\phi)$.