MTHSC 412 SECTION 1.1 – THE DIVISION ALGORITHM

Kevin James

THEOREM (WELL-ORDERING PRINCIPLE)

Every nonempty set S of nonnegative integers has a least element. That is, there is $m \in S$ such that $x \in S \Rightarrow m \le x$.

Theorem (Well-Ordering Principle)

Every nonempty set S of nonnegative integers has a least element. That is, there is $m \in S$ such that $x \in S \Rightarrow m \le x$.

Note

The well ordering principle is equivalent to the principle of mathematical induction.

Suppose that $a,b\in\mathbb{Z}$ with b>0. Then there exist unique $q,r\in\mathbb{Z}$ such that

- $\mathbf{0}$ a = bq + r, and
- **2** $0 \le r < b$.

Suppose that $a,b\in\mathbb{Z}$ with b>0. Then there exist unique $q,r\in\mathbb{Z}$ such that

- $\mathbf{0}$ a = bq + r, and
- **2** $0 \le r < b$.

EXAMPLE

1 Given a = 14 and b = 3, we can write

Suppose that $a,b\in\mathbb{Z}$ with b>0. Then there exist unique $q,r\in\mathbb{Z}$ such that

- $\mathbf{0}$ a = bq + r, and
- **2** $0 \le r < b$.

EXAMPLE

① Given a = 14 and b = 3, we can write 14 = 3 * 4 + 2. So, q = 4 and r = 2.

Suppose that $a,b \in \mathbb{Z}$ with b > 0. Then there exist unique $q,r \in \mathbb{Z}$ such that

- $\mathbf{0}$ a = bq + r, and
- **2** $0 \le r < b$.

EXAMPLE

- ① Given a = 14 and b = 3, we can write 14 = 3 * 4 + 2. So, q = 4 and r = 2.
- ② Given a = -14 and b = 3, we can write

Suppose that $a,b \in \mathbb{Z}$ with b > 0. Then there exist unique $q,r \in \mathbb{Z}$ such that

- $\mathbf{0}$ a = bq + r, and
- **2** $0 \le r < b$.

EXAMPLE

- ① Given a = 14 and b = 3, we can write 14 = 3 * 4 + 2. So, q = 4 and r = 2.
- ② Given a = -14 and b = 3, we can write -14 = 3 * (-5) + 1. So, q = -5 and r = 1.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$

Note that S is a subset of the nonnegative integers.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

$$b \ge 1$$

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

$$b \ge 1 \Rightarrow |a|b \ge |a|$$

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a$$

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

 $b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a + b|a| \ge 0.$

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

 $b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a + b|a| \ge 0.$

Thus, $a - b(-|a|) \in S$.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

By the Well Ordering Principle, S has a smallest element.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

By the Well Ordering Principle, *S* has a smallest element.

Let r be the smallest element of S.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

By the Well Ordering Principle, S has a smallest element.

Let r be the smallest element of S.

Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

By the Well Ordering Principle, S has a smallest element.

Let r be the smallest element of S.

Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Also, note that

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

By the Well Ordering Principle, S has a smallest element.

Let r be the smallest element of S.

Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Also, note that

$$r - b = (a - bq) - b =$$

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

By the Well Ordering Principle, S has a smallest element.

Let r be the smallest element of S.

Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Also, note that

$$r - b = (a - bq) - b = = a - b(q + 1).$$

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

By the Well Ordering Principle, S has a smallest element.

Let r be the smallest element of S.

Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Also, note that

$$r - b = (a - bq) - b = = a - b(q + 1).$$

Since r - b < r and r is the least element of S, it follows that

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

By the Well Ordering Principle, S has a smallest element.

Let r be the smallest element of S.

Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Also, note that

$$r - b = (a - bq) - b = = a - b(q + 1).$$

Since r - b < r and r is the least element of S, it follows that $r - b < 0 \Rightarrow r < b$.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0.

Let
$$S = \{a - bq \mid q \in \mathbb{Z}; a - bq \ge 0\}.$$

Note that S is a subset of the nonnegative integers.

Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$.

Now, assume $a \neq 0$. Recall that

$$b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a+b|a| \ge 0.$$

Thus,
$$a - b(-|a|) \in S$$
.

So,
$$S \neq \emptyset$$
.

By the Well Ordering Principle, S has a smallest element.

Let r be the smallest element of S.

Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$.

Also, note that

$$r - b = (a - bq) - b = = a - b(q + 1).$$

Since r - b < r and r is the least element of S, it follows that $r - b < 0 \Rightarrow r < b$.

Uniqueness: Exercise.

COROLLARY

Let a, $c \in \mathbb{Z}$ with $c \neq 0$. Then there exist unique $q, r \in \mathbb{Z}$ such that

$$a = cq + r$$
 and $0 \le r < |c|$.

Proof.

Exercise.

