MTHSC 412 Section 1.1 – The Division Algorithm

Kevin James

Kevin James MTHSC 412 Section 1.1 – The Division Algorithm

æ

< ≣ >

THEOREM (WELL-ORDERING PRINCIPLE)

Every nonempty set S of nonnegative integers has a least element. That is, there is $m \in S$ such that $x \in S \Rightarrow m \le x$.

Note

The well ordering principle is equivalent to the principle of mathematical induction.

THEOREM (THE DIVISION ALGORITHM)

Suppose that a, $b\in\mathbb{Z}$ with b>0. Then there exist unique $q,r\in\mathbb{Z}$ such that

- 1 a = bq + r, and
- **2** $0 \le r < b$.

EXAMPLE

1 Given
$$a = 14$$
 and $b = 3$, we can write $14 = 3 * 4 + 2$. So, $q = 4$ and $r = 2$.

2 Given
$$a = -14$$
 and $b = 3$, we can write $-14 = 3 * (-5) + 1$.
So, $q = -5$ and $r = 1$.

イロン イ部ン イヨン イヨン 三日

Proof.

Existence: Let $a, b \in \mathbb{Z}$ with b > 0. Let $S = \{a - bq \mid q \in \mathbb{Z}; a - bq > 0\}.$ Note that S is a subset of the nonnegative integers. Now, note that if a = 0 then a - b(-1) = b > 0. Thus, $b \in S$. Now, assume $a \neq 0$. Recall that $b \ge 1 \Rightarrow |a|b \ge |a| \ge -a \Rightarrow a + b|a| \ge 0.$ Thus, $a - b(-|a|) \in S$. So, $S \neq \emptyset$. By the Well Ordering Principle, S has a smallest element. Let r be the smallest element of S. Then $r \ge 0$ and we have for some $q \in \mathbb{Z}$, $a - bq = r \Rightarrow a = bq + r$. Also, note that r - b = (a - bq) - b == a - b(q + 1).Since r - b < r and r is the least element of S, it follows that $r-b < 0 \Rightarrow r < b$ Uniqueness: Exercise.

- 4 同 2 4 日 2 4 日 2

COROLLARY

Let $a, c \in \mathbb{Z}$ with $c \neq 0$. Then there exist unique $q, r \in \mathbb{Z}$ such that

$$a = cq + r$$
 and $0 \le r < |c|$.

PROOF. Exercise.

イロン イヨン イヨン イヨン

3