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DI1vISOR AND MULTIPLE

DEFINITION

Let a, b € Z with b ## 0. We say that b divides a or that a is a
multiple of b if there is an integer ¢ such that a = bc. In this case,
we write b|a.

e 3|12 but 3 /13.
o If b# 0, then b|0 because 0 = b - 0.

\
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REMARK
e a and —a have the same divisors.

e If 2 # 0, then every divisor b of a satisfies |b| < |a.

e A nonzero integer a has only finitely many divisors.
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GREATEST COMMON DIVISOR

DEFINITION

Suppose that a, b € Z, not both zero. Then we say that d € Z is a
greatest common divisor (gcd) of a and b if the following
conditions are satisfied.

® d|a and d|b.

® If c|a and c|b then ¢ < d.

If d is the ged of a and b we may write (a, b) = d.

It is sometimes useful to define (0,0) = 0.
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O (14,35) = 7.
® (1529) = 1.

If (a, b) = 1 then a and b are said to be relatively prime or coprime.
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THEOREM

Let a, b € Z with at least one nonzero. Then there exists a unique
gcd d of a and b. Moreover d can be realized as an integral linear
combination of a and b. That is, there are (not necessarily unique)
m, n € Z such that

d = am+ bn.

Further, d is the smallest positive integer of this form.
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PROOF

Suppose that a, b € Z with at least one being nonzero.

Existence: Let S = {ax+ by | x,y € Z; ax + by > 0}.

First note that a®> + b> =a-a+b-b<€ S. So, S # 0.

Using the well ordering principle, let d be the least element of S.
Since, d € S, there are x, y € Z such that d = ax + by.

It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dg+ r with 0 < r < d.
Then r =a—dq =a— (ax+ by)g = a(1 — xq) + b(—yq).
However, r < d = r ¢ S, (b/c d is the least element of S).

Thus r =0 and d|a.

We can prove that d|b in a similar way.
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PROOF CONTINUED ...

Finally suppose that c|a and c|b.

Then we have a = ck and b = cm for some k, m € Z.

Thus d = ax + by = ckx + cmy = c(kx + my) and c|d.

Thus, ¢ < |d| =d. So, d is the gcd of a and b.

Uniqueness: Suppose now that we have two gcd's d and e.

Since d|a and d|b and since e is a ged, d < e.

Since e|a and e|b and since d is a ged, e < d.

So, we have d < e < d which can only be true if e = d. O
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COROLLARY

Let a, b € Z, not both zero, and let 0 < d € Z. Then, d is the gcd
of a and b if and only if d satisfies the following two conditions.

® d|a and d|b.
® ifclaandc

b, then c|d.
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PROOF.

(=) Suppose that d = (a, b).

Then d|a and d|b by definition.

Also, there are x,y € Z such that d = ax + by.

Suppose that c|a and c|b.

Then we can write a = ck and b = cm for some k, m € 7Z.
So, d = ax + by = (ck)x + (cm)y = c(kx + my).

Thus, c|d.

So, d satisfies both conditions of our result.

(«<:) Now suppose 0 < d € Z satisfying conditions 1 and 2.

Then d|a and d|b.

Now, suppose that c|a and c|b.

Then we know that c|d by condition 2.

So, by our remark, ¢ < |c| < |d| = d.

Thus d is the gcd of a and b. Ol
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If a and b are coprime and a|bc then ac.

PRrROOF.

Since a and b are coprime, there are x,y € Z such that
ax + by = 1.

Since a|bc there is k € Z such that bc = ak. So,

l=ax+by = c=acx+ bcy
= ¢ =acx + aky (because bc = ak)
= c¢=a(ex+ ky)
= alc.
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COMPUTING THE GCD

If a= bq + r then (a,b) = (b, r).

PROOF

Suppose that ¢ is a common divisor of a and b.

Then a = ck and b = cm for some k, m € Z.

Thus r = a — bg = ck — (cm)q = c(k — mq).

Thus c|r and is thus a common divisor of b (by assumption) and r.

Now suppose that ¢ is a common divisor of b and r. A similar
argument shows that c is a common divisor of a and b.

So, the set of common divisors of a and b is identical to the set of
common divisors of b and r.

It follows that (a, b) = (b, r) O

v
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EUCLIDEAN ALGORITHM

Given a and b not both zero, first note that (a, b) = (|al, |b|). So
we may replace a and b by |a| and |b]| respectively.

Thus after rearrangement if necessary we can assume that a > 0
and that b > 0.

Use the division algorithm to write

a=bg+r, 0<r<b

Then recall that (a, b) = (b, r).

Now repeat the process with a replaced by b and b replaced by r.
Continuing in this manner you will encounter a remainder of 0
because the remainders must be nonnegative and must decrease.
Now, note that (r,0) = r.
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EXAMPLE

Compute the (246,180).

246 = 180(1) + 66 = (246, 180) = (180, 66).
180 = 66(2) + 48 = (180, 66) = (66, 48).

66 = 48(1) + 18 = (66, 48) = (48, 18).

48 = 18(2) + 12 = (48,18) = (18,12).

18 = 12(1) + 6 = (18,12) = (12,6).

12 = 6(2) + 0 = (12,6) = (6,0) = 6!
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FINDING x AND y

The Euclidean algorithm produces:

a=bg+n
b=ng+n
n=nrqg+n

rn=r3qs+
fi2 = ri-1q;i + f;

-3 = m—2qn-1+ -1
fh—2 = rn—1qn + In

fn—1 = rqn+1 + 0
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FINDING x AND y

The Euclidean algorithm produces:

a=bg1+n = n=a-—bqg

b=rngp+n = n=b—ng
n=nrg+mn = rn=rn—ng
n=mnq+rn = rn=1rmn-—1rq
fi—p =1ri—1qi +r = r="ri—2—ri-1q;
'h—3 = '—24qn—-1 + rh—1 = I'n—1="Ip—3 — Ih—2qn-1
fh—2 = rh—1qGn + In = In=1"Ih—2—Ih—1qn

fn—1 = rgn+1 + 0
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FINDING x AND y

The Euclidean algorithm produces:

a=bg1+n = n=a-—bqg

b=rngp+n = n=b—ng
n=nrg+mn = rn=rn—ng
n=mnq+rn = rn=1rmn-—1rq
fi—p =1ri—1qi +r = r="ri—2—ri-1q;
'h—3 = '—24qn—-1 + rh—1 = I'n—1="Ip—3 — Ih—2qn-1
fh—2 = rh—1qGn + In = In=1"Ih—2—Ih—1qn

fn—1 = rgn+1 + 0

Note that (a, b) = r,
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FINDING x AND y

The Euclidean algorithm produces:

a=bg1+n = n=a-—bqg

b=rngp+n = n=b—ng
n=nrg+mn = rn=rn—ng
n=mnq+rn = rn=1rmn-—1rq
fi—p =1ri—1qi +r = r="ri—2—ri-1q;
'h—3 = '—24qn—-1 + rh—1 = I'n—1="Ip—3 — Ih—2qn-1
fh—2 = rh—1qGn + In = In=1"Ih—2—Ih—1qn

rn—1= rmqns1 + 0

Note that (a, b) = r, and we can use successive back substitution
to write r, in terms of r, and ri_1 eventually expressing r,, in
terms of a and b.
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EXAMPLE

Let’s reconsider our previous example: (246,180) = 6.

246 = 180(1) + 66 = 66 = 246 + (—1)180
180 = 66(2) +48 = 48 = 180 + (—2)66
66 = 48(1) + 18 = 18=66+ (—1)48
48 =18(2)+12 = 12=48+(—2)18
18=12(1)+6 = 6=18+(—1)12
12=16(2)+0
Now write
6 = 18+ (—1)12=18+ (—1)[48+ (—2)18] = (3)18 + (—1)48

(3)[66 + (—1)48] + (—1)48 = (3)66 + (—4)48
(3)66 + (—4)[180 + (—2)66] = (11)66 + (—4)180
= (11)[246 + (—1)180] + (—4)180 = (11)246 + (—15)180.

So, take x = 11 and y = —15.
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