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Divisor and Multiple

Definition

Let a, b ∈ Z with b 6= 0. We say that b divides a or that a is a
multiple of b if there is an integer c such that a = bc. In this case,
we write b|a.

Example

• 3|12 but 3 6 |13.

• If b 6= 0, then b|0 because 0 = b · 0.

Kevin James MTHSC 412 Section 1.2 – Divisibility



Remark

• a and −a have the same divisors.

• If a 6= 0, then every divisor b of a satisfies |b| ≤ |a|.
• A nonzero integer a has only finitely many divisors.
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Greatest Common Divisor

Definition

Suppose that a, b ∈ Z, not both zero. Then we say that d ∈ Z is a
greatest common divisor (gcd) of a and b if the following
conditions are satisfied.

1 d |a and d |b.

2 If c |a and c |b then c ≤ d .

Notation

If d is the gcd of a and b we may write (a, b) = d .

My Convention

It is sometimes useful to define (0, 0) = 0.
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Example

1 (14,35) = 7.

2 (15,29) = 1.

Definition

If (a, b) = 1 then a and b are said to be relatively prime or coprime.

Kevin James MTHSC 412 Section 1.2 – Divisibility



Theorem

Let a, b ∈ Z with at least one nonzero. Then there exists a unique
gcd d of a and b. Moreover d can be realized as an integral linear
combination of a and b. That is, there are (not necessarily unique)
m, n ∈ Z such that

d = am + bn.

Further, d is the smallest positive integer of this form.
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Proof

Suppose that a, b ∈ Z with at least one being nonzero.
Existence: Let S = {ax + by | x , y ∈ Z; ax + by > 0}.
First note that a2 + b2 = a · a + b · b ∈ S . So, S 6= ∅.
Using the well ordering principle, let d be the least element of S .
Since, d ∈ S , there are x , y ∈ Z such that d = ax + by .
It is also clear that d is the smallest such number which is positive.
By the division algorithm, we can write a = dq + r with 0 ≤ r < d .
Then r = a− dq = a− (ax + by)q = a(1− xq) + b(−yq).
However, r < d ⇒ r 6∈ S , (b/c d is the least element of S).
Thus r = 0 and d |a.
We can prove that d |b in a similar way.
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Proof continued ...

Finally suppose that c |a and c |b.
Then we have a = ck and b = cm for some k, m ∈ Z.
Thus d = ax + by = ckx + cmy = c(kx + my) and c |d .
Thus, c ≤ |d | = d . So, d is the gcd of a and b.
Uniqueness: Suppose now that we have two gcd’s d and e.
Since d |a and d |b and since e is a gcd, d ≤ e.
Since e|a and e|b and since d is a gcd, e ≤ d .
So, we have d ≤ e ≤ d which can only be true if e = d .
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Corollary

Let a, b ∈ Z, not both zero, and let 0 < d ∈ Z. Then, d is the gcd
of a and b if and only if d satisfies the following two conditions.

1 d |a and d |b.

2 if c |a and c |b, then c |d.
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Proof.

(⇒:) Suppose that d = (a, b).
Then d |a and d |b by definition.
Also, there are x , y ∈ Z such that d = ax + by .
Suppose that c |a and c |b.
Then we can write a = ck and b = cm for some k , m ∈ Z.
So, d = ax + by = (ck)x + (cm)y = c(kx + my).
Thus, c |d .
So, d satisfies both conditions of our result.

(⇐:) Now suppose 0 < d ∈ Z satisfying conditions 1 and 2.
Then d |a and d |b.
Now, suppose that c |a and c |b.
Then we know that c|d by condition 2.
So, by our remark, c ≤ |c | ≤ |d | = d .
Thus d is the gcd of a and b.
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Theorem

If a and b are coprime and a|bc then a|c.

Proof.

Since a and b are coprime, there are x , y ∈ Z such that
ax + by = 1.
Since a|bc there is k ∈ Z such that bc = ak. So,

1 = ax + by ⇒ c = acx + bcy

⇒ c = acx + aky (because bc = ak)

⇒ c = a(cx + ky)

⇒ a|c .
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Computing the GCD

Fact

If a = bq + r then (a, b) = (b, r).

Proof

Suppose that c is a common divisor of a and b.
Then a = ck and b = cm for some k , m ∈ Z.
Thus r = a− bq = ck − (cm)q = c(k −mq).
Thus c |r and is thus a common divisor of b (by assumption) and r .

Now suppose that c is a common divisor of b and r . A similar
argument shows that c is a common divisor of a and b.
So, the set of common divisors of a and b is identical to the set of
common divisors of b and r .
It follows that (a, b) = (b, r)
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Euclidean Algorithm

Given a and b not both zero, first note that (a, b) = (|a|, |b|). So
we may replace a and b by |a| and |b| respectively.
Thus after rearrangement if necessary we can assume that a ≥ 0
and that b > 0.
Use the division algorithm to write

a = bq + r ; 0 ≤ r < b

Then recall that (a, b) = (b, r).
Now repeat the process with a replaced by b and b replaced by r .
Continuing in this manner you will encounter a remainder of 0
because the remainders must be nonnegative and must decrease.
Now, note that (r , 0) = r .
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Example

Compute the (246, 180).
246 = 180(1) + 66⇒ (246, 180) = (180, 66).
180 = 66(2) + 48⇒ (180, 66) = (66, 48).
66 = 48(1) + 18⇒ (66, 48) = (48, 18).
48 = 18(2) + 12⇒ (48, 18) = (18, 12).
18 = 12(1) + 6⇒ (18, 12) = (12, 6).
12 = 6(2) + 0⇒ (12, 6) = (6, 0) = 6!
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Finding x and y

The Euclidean algorithm produces:

a = bq1 + r1

⇒ r1 = a− bq

b = r1q2 + r2

⇒ r2 = b − r1q2

r1 = r2q3 + r3

⇒ r3 = r1 − r2q3

r2 = r3q4 + r4

⇒ r4 = r2 − r3q4

...

...

ri−2 = ri−1qi + ri

⇒ ri = ri−2 − ri−1qi

...

...

rn−3 = rn−2qn−1 + rn−1

⇒ rn−1 = rn−3 − rn−2qn−1

rn−2 = rn−1qn + rn

⇒ rn = rn−2 − rn−1qn

rn−1 = rnqn+1 + 0

Note that (a, b) = rn and we can use successive back substitution
to write rn in terms of rk and rk−1 eventually expressing rn in
terms of a and b.
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Example

Let’s reconsider our previous example: (246, 180) = 6.

246 = 180(1) + 66 ⇒ 66 = 246 + (−1)180

180 = 66(2) + 48 ⇒ 48 = 180 + (−2)66

66 = 48(1) + 18 ⇒ 18 = 66 + (−1)48

48 = 18(2) + 12 ⇒ 12 = 48 + (−2)18

18 = 12(1) + 6 ⇒ 6 = 18 + (−1)12

12 = 6(2) + 0

Now write

6 = 18 + (−1)12 = 18 + (−1)[48 + (−2)18] = (3)18 + (−1)48

= (3)[66 + (−1)48] + (−1)48 = (3)66 + (−4)48

= (3)66 + (−4)[180 + (−2)66] = (11)66 + (−4)180

= (11)[246 + (−1)180] + (−4)180 = (11)246 + (−15)180.

So, take x = 11 and y = −15.
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