MTHSC 412 Section 1.3 – Primes and Unique Factorization

Kevin James

DEFINITION

An integer p is said to be <u>prime</u> if $p \neq 0, \pm 1$ and the only divisors of p are ± 1 and $\pm p$.

DEFINITION

An integer p is said to be <u>prime</u> if $p \neq 0, \pm 1$ and the only divisors of p are ± 1 and $\pm p$.

EXAMPLE

2, 3, 5, 7, 11, 13, 17, 19, 23 and 29 are primes.

4, 6, 8, 9, 10, 12 are not.

FACT

- p is prime if and only if −p is prime.
- If p and q are prime and p|q, then $p = \pm q$.

FACT

- p is prime if and only if −p is prime.
- If p and q are prime and p|q, then $p = \pm q$.

THEOREM

Let $0, \pm 1 \neq p \in \mathbb{Z}$. Then p is a prime if and only if whenever p|bc, p|b or p|c.

 (\Rightarrow) : Suppose that p is prime and that p|bc.

 (\Rightarrow) : Suppose that p is prime and that p|bc.

 $\overline{\operatorname{Let}} d = (p, b).$

(⇒): Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p.

(⇒): Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p. So, d = 1 or |p|.

(⇒): Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p. So, d = 1 or |p|.

Case 1: d = |p|. In this case, we have $d = \pm 1 \cdot p$.

(⇒): Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p. So, d = 1 or |p|.

Case 1: d = |p|. In this case, we have $d = \pm 1 \cdot p$.

Also, d|b.

(⇒): Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p. So, d = 1 or |p|.

Case 1: d = |p|. In this case, we have $d = \pm 1 \cdot p$.

Also, d|b. So, b = dk for some $k \in \mathbb{Z}$.

(⇒): Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p. So, d = 1 or |p|.

Case 1: d = |p|. In this case, we have $d = \pm 1 \cdot p$.

Also, d|b. So, b = dk for some $k \in \mathbb{Z}$.

So,
$$b = dk = p \cdot (\pm k)$$
,

(⇒): Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p. So, d = 1 or |p|.

Case 1: d = |p|. In this case, we have $d = \pm 1 \cdot p$.

Also, d|b. So, b = dk for some $k \in \mathbb{Z}$.

So, $b = dk = p \cdot (\pm k)$, and p|b.

(⇒): Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p. So, d = 1 or |p|.

Case 1: d = |p|. In this case, we have $d = \pm 1 \cdot p$.

Also, d|b. So, b = dk for some $k \in \mathbb{Z}$.

So, $b = dk = p \cdot (\pm k)$, and p|b.

Case 2: d = 1. In this case, we have p|bc and (p, b) = 1.

(⇒): Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p. So, d = 1 or |p|.

Case 1: d = |p|. In this case, we have $d = \pm 1 \cdot p$.

Also, d|b. So, b = dk for some $k \in \mathbb{Z}$.

So, $b = dk = p \cdot (\pm k)$, and p|b.

Case 2: d = 1. In this case, we have p|bc and (p, b) = 1.

So, by theorem 1.5 in our book, p|c.

 (\Rightarrow) : Suppose that p is prime and that p|bc.

 $\overline{\text{Let }}d=(p,b).$

Then $d \ge 1$ and d|p. So, d = 1 or |p|.

Case 1: d = |p|. In this case, we have $d = \pm 1 \cdot p$.

Also, d|b. So, b = dk for some $k \in \mathbb{Z}$.

So, $b = dk = p \cdot (\pm k)$, and p|b.

Case 2: d = 1. In this case, we have p|bc and (p, b) = 1.

So, by theorem 1.5 in our book, p|c.

(⇐): Exercise.

If p is a prime and $p|a_1a_2\cdots a_n$ then p divides at least one of the a_i 's.

If p is a prime and $p|a_1a_2\cdots a_n$ then p divides at least one of the a_i 's.

Proof.

We are given that $p|(a_1)\cdot(a_2\cdot\cdots\cdot a_n)$.

If p is a prime and $p|a_1a_2\cdots a_n$ then p divides at least one of the a_i 's.

Proof.

We are given that $p|(a_1) \cdot (a_2 \cdot \cdots \cdot a_n)$.

By the previous theorem, we can conclude that $p|a_1$ or $p|(a_2 \cdot \cdot \cdot \cdot \cdot a_n)$.

If p is a prime and $p|a_1a_2\cdots a_n$ then p divides at least one of the a_i 's.

Proof.

We are given that $p|(a_1) \cdot (a_2 \cdot \cdots \cdot a_n)$.

By the previous theorem, we can conclude that $p|a_1$ or $p|(a_2 \cdot \cdot \cdot \cdot \cdot a_n)$.

In the latter case, we can again apply the theorem, to conclude that either $p|a_2$ or $p|(a_3 \cdot \cdot \cdot \cdot \cdot a_n)$.

If p is a prime and $p|a_1a_2\cdots a_n$ then p divides at least one of the a_i 's.

Proof.

We are given that $p|(a_1) \cdot (a_2 \cdot \cdots \cdot a_n)$.

By the previous theorem, we can conclude that $p|a_1$ or $p|(a_2 \cdot \cdot \cdot \cdot \cdot a_n)$.

In the latter case, we can again apply the theorem, to conclude that either $p|a_2$ or $p|(a_3 \cdot \cdot \cdot \cdot \cdot a_n)$.

Thus after at most n-1 applications or our theorem, we can conclude that $p|a_i$ for some $1 \le i \le n$.

THEOREM

Suppose that $0, \pm 1 \neq n \in \mathbb{Z}$. Then n can be expressed as a product of primes.

THEOREM

Suppose that $0, \pm 1 \neq n \in \mathbb{Z}$. Then n can be expressed as a product of primes.

Note

We allow expressions involving only one prime. Thus any prime is easily expressible as a product of primes.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m. Since $m \in S$, m cannot be a prime.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m.

Since $m \in S$, m cannot be a prime.

Thus m has some divisor other than $\pm 1, \pm m$, say a.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m.

Since $m \in S$, m cannot be a prime.

Thus m has some divisor other than $\pm 1, \pm m$, say a.

We may assume that a>1 and thus that m=ab where

 $1 < a, b < m \text{ and } a, b \in \mathbb{Z}.$

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m.

Since $m \in S$, m cannot be a prime.

Thus m has some divisor other than $\pm 1, \pm m$, say a.

We may assume that a > 1 and thus that m = ab where 1 < a, b < m and $a, b \in \mathbb{Z}$.

Now, since, a and b are integers greater than 1 but smaller than m, a, $b \notin S$.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m.

Since $m \in S$, m cannot be a prime.

Thus m has some divisor other than $\pm 1, \pm m$, say a.

We may assume that a > 1 and thus that m = ab where 1 < a, b < m and $a, b \in \mathbb{Z}$.

Now, since, a and b are integers greater than 1 but smaller than m, a, $b \notin S$.

Thus, a and b can be expressed as a product of primes,

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m. Since $m \in S$, m cannot be a prime.

Thus m has some divisor other than $\pm 1, \pm m$, say a.

We may assume that a > 1 and thus that m = ab where 1 < a, b < m and $a, b \in \mathbb{Z}$.

Now, since, a and b are integers greater than 1 but smaller than m, a, $b \notin S$.

Thus, a and b can be expressed as a product of primes, say $a = p_1 \cdot \dots \cdot p_t$ and $b = q_1 \cdot \dots \cdot q_r$.

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m.

Since $m \in S$, m cannot be a prime.

Thus m has some divisor other than $\pm 1, \pm m$, say a.

We may assume that a > 1 and thus that m = ab where 1 < a, b < m and $a, b \in \mathbb{Z}$.

Now, since, a and b are integers greater than 1 but smaller than m, a, $b \notin S$.

Thus, a and b can be expressed as a product of primes, say $a = p_1 \cdot \dots \cdot p_t$ and $b = q_1 \cdot \dots \cdot q_r$. Thus, m = ab =

Since $n = p_1 \cdot \dots \cdot p_k$ if and only if $-n = (-p_1)p_2 \cdot \dots \cdot p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m.

Since $m \in S$, m cannot be a prime.

Thus m has some divisor other than $\pm 1, \pm m$, say a.

We may assume that a > 1 and thus that m = ab where 1 < a, b < m and $a, b \in \mathbb{Z}$.

Now, since, a and b are integers greater than 1 but smaller than m, a, $b \notin S$.

Thus, a and b can be expressed as a product of primes, say $a = p_1 \cdot \dots \cdot p_t$ and $b = q_1 \cdot \dots \cdot q_r$.

Thus, $m = ab = p_1 \cdot \cdots \cdot p_t \cdot q_1 \cdot \cdots \cdot q_r$ which is a product of primes.

Proof continued ...

Thus $m \notin S$ which contradicts our choice of $m \in S$.

Proof continued ...

Thus $m \notin S$ which contradicts our choice of $m \in S$. So, we conclude that $S = \emptyset$ and thus all integers greater than 1 can be expressed as a product of primes, and

Proof continued ...

Thus $m \notin S$ which contradicts our choice of $m \in S$. So, we conclude that $S = \emptyset$ and thus all integers greater than 1 can be expressed as a product of primes, and as mentioned above this implies that all integers other than 0 and ± 1 can be expressed as a product of primes.

THEOREM (FUNDAMENTAL THEOREM OF ARITHMETIC)

Every $0, \pm 1 \neq n \in \mathbb{Z}$ can be written as a product of primes. This factorization is unique up to rearrangement and sign change.

THEOREM (FUNDAMENTAL THEOREM OF ARITHMETIC)

Every $0, \pm 1 \neq n \in \mathbb{Z}$ can be written as a product of primes. This factorization is unique up to rearrangement and sign change.

COROLLARY

Every integer n>1 can be expressed uniquely as $n=p_1\cdot \dots \cdot p_t$ where the $p_1\leq p_2\leq \dots \leq p_t$ and where the p_i 's are positive primes.

THEOREM

Let n > 1. If n has no positive prime factor less than or equal to \sqrt{n} , then n is prime.