MTHSC 412 Section 1.3 – Primes and Unique Factorization

Kevin James

Kevin James MTHSC 412 Section 1.3 – Primes and Unique Factorization

(本間) (本語) (本語)

DEFINITION

An integer p is said to be prime if $p \neq 0, \pm 1$ and the only divisors of p are ± 1 and $\pm p$.

EXAMPLE

2, 3, 5, 7, 11, 13, 17, 19, 23 and 29 are primes. 4, 6, 8, 9, 10, 12 are not.

- 4 周 ト - 4 日 ト - 4 日 ト

Fact

- *p* is prime if and only if -*p* is prime.
- If p and q are prime and p|q, then $p = \pm q$.

Theorem

Let $0, \pm 1 \neq p \in \mathbb{Z}$. Then p is a prime if and only if whenever p|bc, p|b or p|c.

イロン イヨン イヨン イヨン

Proof.

 $\begin{array}{l} (\Rightarrow): \text{ Suppose that } p \text{ is prime and that } p | bc.\\ \text{Let } d = (p, b).\\ \text{Then } d \geq 1 \text{ and } d | p. \text{ So, } d = 1 \text{ or } | p |.\\ \text{Case 1: } d = |p|. \text{ In this case, we have } d = \pm 1 \cdot p.\\ \hline \text{Also, } d | b. \text{ So, } b = dk \text{ for some } k \in \mathbb{Z}.\\ \text{So, } b = dk = p \cdot (\pm k), \text{ and } p | b.\\ \hline \text{Case 2: } d = 1. \text{ In this case, we have } p | bc \text{ and } (p, b) = 1.\\ \hline \text{So, by theorem 1.5 in our book, } p | c.\\ \hline (\Leftarrow): \text{ Exercise.} \end{array}$

マロト イヨト イヨト

COROLLARY

If p is a prime and $p|a_1a_2\cdots a_n$ then p divides at least one of the a_i 's.

Proof.

We are given that $p|(a_1) \cdot (a_2 \cdots a_n)$. By the previous theorem, we can conclude that $p|a_1$ or $p|(a_2 \cdots a_n)$. In the latter case, we can again apply the theorem, to conclude that either $p|a_2$ or $p|(a_3 \cdots a_n)$. Thus after at most n-1 applications or our theorem, we can conclude that $p|a_i$ for some $1 \le i \le n$.

・ロト ・回ト ・ヨト ・ヨト

Theorem

Suppose that $0, \pm 1 \neq n \in \mathbb{Z}$. Then n can be expressed as a product of primes.

Note

We allow expressions involving only one prime. Thus any prime is easily expressible as a product of primes.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Proof

Since $n = p_1 \cdots p_k$ if and only if $-n = (-p_1)p_2 \cdots p_k$, we may assume without loss of generality that $n \ge 2$.

Let S denote the set of all integers greater than 1 which cannot be expressed as a product of primes.

We will show that $S = \emptyset$.

Assume for the sake of contradiction that $S \neq \emptyset$.

Then by the well ordering principle, S has a smallest element m. Since $m \in S$, m cannot be a prime.

Thus *m* has some divisor other than $\pm 1, \pm m$, say *a*.

We may assume that a > 1 and thus that m = ab where

$$1 < a, b < m$$
 and $a, b \in \mathbb{Z}$.

Now, since, a and b are integers greater than 1 but smaller than m, $a, b \notin S$.

Thus, a and b can be expressed as a product of primes, say

 $a = p_1 \cdots p_t$ and $b = q_1 \cdots q_r$.

Thus, $m = ab = p_1 \cdots p_t \cdot q_1 \cdots q_r$ which is a product of primes.

PROOF CONTINUED ...

Thus $m \notin S$ which contradicts our choice of $m \in S$. So, we conclude that $S = \emptyset$ and thus all integers greater than 1 can be expressed as a product of primes, and as mentioned above this implies that all integers other than 0 and ± 1 can be expressed as a product of primes.

(1) マン・ション・

THEOREM (FUNDAMENTAL THEOREM OF ARITHMETIC)

Every $0, \pm 1 \neq n \in \mathbb{Z}$ can be written as a product of primes. This factorization is unique up to rearrangement and sign change.

COROLLARY

Every integer n > 1 can be expressed uniquely as $n = p_1 \cdots p_t$ where the $p_1 \le p_2 \le \cdots \le p_t$ and where the p_i 's are positive primes.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Let n > 1. If n has no positive prime factor less than or equal to \sqrt{n} , then n is prime.

回 と く ヨ と く ヨ と

æ