MTHSC 412 SECTION 2.1 –CONGRUENCE AND CONGRUENCE CLASSES

Kevin James

DEFINITION

Let $a, b, n \in \mathbb{Z}$ with n > 0. We say that \underline{a} is congruent to \underline{b} modulo \underline{n} and write $\underline{a} \equiv \underline{b} \pmod{n}$ when $\underline{n}|(a-\underline{b})$.

DEFINITION

Let $a, b, n \in \mathbb{Z}$ with n > 0. We say that \underline{a} is congruent to \underline{b} modulo \underline{n} and write $\underline{a} \equiv b \pmod{n}$ when $\underline{n}|(a-b)$.

EXAMPLE

- $1 \equiv 5 \pmod{4}$.
- $2 \equiv 17 \pmod{3}$.
- **3** $16 \equiv 4 \pmod{3}$.
- **4** $1 \not\equiv 5 \pmod{3}$.

THEOREM

Let $0 < n \in \mathbb{Z}$. Then $\equiv \pmod{n}$ is an equivalence relation on \mathbb{Z} . That is, $\equiv \pmod{n}$ satisfies the following three properties.

Reflexivity $x \equiv x \pmod{n}$ for all $x \in \mathbb{Z}$.

Symmetry If $x \equiv y \pmod{n}$ then $y \equiv x \pmod{n}$.

Transitivity If $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$ then $x \equiv z \pmod{n}$

Let n > 0 be an integer.

Let n > 0 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Let n > 0 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x$

 $(\text{mod } n) \text{ and } \equiv (\text{mod } n) \text{ is reflexive.}$

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Let n > 0 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x$

 $(\text{mod } n) \text{ and } \equiv (\text{mod } n) \text{ is reflexive.}$

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

Let n > 0 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $\pi'(x, y, y) = x(x, y, y)$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Let n > 0 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Let n > 0 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x$

 \pmod{n} and $\equiv \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Transitive: Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$

Let n > 0 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y - x) = n(-k). Thus, n|(y - x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Transitive: Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$

Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$.

Let n > 0 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y - x) = n(-k). Thus, n|(y - x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Transitive: Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$

Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$.

So, (x-z) = (x-y) + (y-z) = n(k+m) and n|(x-z).

Let n > 0 be an integer.

Reflexive: For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive.

Symmetric: Suppose that $x \equiv y \pmod{n}$.

Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$.

So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$.

Thus $\equiv \pmod{n}$ is symmetric.

Transitive: Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$

Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$.

So, (x-z) = (x-y) + (y-z) = n(k+m) and n|(x-z).

Thus $x \equiv z \pmod{n}$ and $\equiv \pmod{n}$ is transitive.

THEOREM

If
$$a \equiv b \pmod{n}$$
 and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

THEOREM

If
$$a \equiv b \pmod{n}$$
 and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$.

THEOREM

If $a \equiv b \pmod{n}$ and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$. Then (a - b) = nk for some $k \in \mathbb{Z}$.

THEOREM

If
$$a \equiv b \pmod{n}$$
 and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$. Then (a - b) = nk for some $k \in \mathbb{Z}$. Thus (a + x) - (b + x) = a - b = nk

Theorem

If
$$a \equiv b \pmod{n}$$
 and $x \in \mathbb{Z}$ then

$$a + x \equiv b + x \pmod{n}$$
 and $ax \equiv bx \pmod{n}$.

Proof.

Suppose that
$$a \equiv b \pmod{n}$$
. Then $(a - b) = nk$ for some $k \in \mathbb{Z}$. Thus $(a + x) - (b + x) = a - b = nk$ and $ax - bx = x(a - b) = xnk$ and the result follows.

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

So,
$$(a+c)-(b+d)=$$

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

So,
$$(a + c) - (b + d) = (a - b) + (c - d) =$$

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

So,
$$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$
.

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$.

So,
$$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$
.

Thus, $a + c \equiv b + d \pmod{n}$.

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$.

So,
$$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$
.

Thus, $a + c \equiv b + d \pmod{n}$.

$$ac - bd =$$

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$.

So,
$$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$
.

Thus, $a + c \equiv b + d \pmod{n}$.

$$ac - bd = ac - bc + bc - bd =$$

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$.

So,
$$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$
.

Thus, $a + c \equiv b + d \pmod{n}$.

$$ac-bd = ac-bc+bc-bd = (a-b)c+b(c-d)$$

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$.

So,
$$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$
.

Thus, $a + c \equiv b + d \pmod{n}$.

$$ac-bd = ac-bc+bc-bd = (a-b)c+b(c-d)$$

= $njc+bnk = n(jc+bk)$.

THEOREM

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$a + c \equiv b + d \pmod{n}$$
 and $ac \equiv bd \pmod{n}$.

Proof.

Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$.

So,
$$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$
.

Thus, $a + c \equiv b + d \pmod{n}$.

Similarly, we have

$$ac-bd = ac-bc+bc-bd = (a-b)c+b(c-d)$$

= $njc+bnk = n(jc+bk)$.

Thus $ac \equiv bd \pmod{n}$.

DEFINITION

Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$.

DEFINITION

Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$.

$$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$

Definition

Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$.

$$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$
$$= \{b \in \mathbb{Z} \mid n | (b-a)\}$$

Definition

Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$.

$$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$
$$= \{b \in \mathbb{Z} \mid n | (b - a)\}$$
$$= \{b \in \mathbb{Z} \mid (b - a) = nk \text{ for some } k \in \mathbb{Z}.\}$$

DEFINITION

Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$.

$$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$

$$= \{b \in \mathbb{Z} \mid n | (b - a)\}$$

$$= \{b \in \mathbb{Z} \mid (b - a) = nk \text{ for some } k \in \mathbb{Z}.\}$$

$$= \{a + nk \mid k \in \mathbb{Z}\}.$$

Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$.

Note

$$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$

$$= \{b \in \mathbb{Z} \mid n | (b - a)\}$$

$$= \{b \in \mathbb{Z} \mid (b - a) = nk \text{ for some } k \in \mathbb{Z}.\}$$

$$= \{a + nk \mid k \in \mathbb{Z}\}.$$

EXAMPLE

Suppose n = 5. Then [9] is an infinite set which contains -6,-1,4,9,14,19 and 24.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Let $x \in [a]$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Let $x \in [a]$.

Then $x \equiv a \pmod{n}$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Let $x \in [a]$.

Then $x \equiv a \pmod{n}$.

Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Let $x \in [a]$.

Then $x \equiv a \pmod{n}$.

Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$.

Thus $x \in [c]$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Let $x \in [a]$.

Then $x \equiv a \pmod{n}$.

Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$.

Thus $x \in [c]$.

We have now shown that $[a] \subseteq [c]$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Let $x \in [a]$.

Then $x \equiv a \pmod{n}$.

Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$.

Thus $x \in [c]$.

We have now shown that $[a] \subseteq [c]$.

Similarly, we can show that $[c] \subseteq [a]$ and so we can conclude that [a] = [c].

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Let $x \in [a]$.

Then $x \equiv a \pmod{n}$.

Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$.

Thus $x \in [c]$.

We have now shown that $[a] \subseteq [c]$.

Similarly, we can show that $[c] \subseteq [a]$ and so we can conclude that [a] = [c].

 (\Leftarrow) : Suppose now that [a] = [c].

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Let $x \in [a]$.

Then $x \equiv a \pmod{n}$.

Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$.

Thus $x \in [c]$.

We have now shown that $[a] \subseteq [c]$.

Similarly, we can show that $[c] \subseteq [a]$ and so we can conclude that [a] = [c].

 (\Leftarrow) : Suppose now that [a] = [c].

By reflexivity, $a \in [a] = [c]$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$.

 (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$.

Let $x \in [a]$.

Then $x \equiv a \pmod{n}$.

Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$.

Thus $x \in [c]$.

We have now shown that $[a] \subseteq [c]$.

Similarly, we can show that $[c] \subseteq [a]$ and so we can conclude that [a] = [c].

 (\Leftarrow) : Suppose now that [a] = [c].

By reflexivity, $a \in [a] = [c]$.

Thus, $a \equiv c \pmod{n}$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c].

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c].

Proof.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c].

PROOF.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$. Let $x \in [a] \cap [c]$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c].

PROOF.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$.

Let $x \in [a] \cap [c]$.

So, we have $x \equiv a \pmod{n}$ and $x \equiv c \pmod{n}$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c].

PROOF.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$.

Let $x \in [a] \cap [c]$.

So, we have $x \equiv a \pmod{n}$ and $x \equiv c \pmod{n}$.

By symmetry, we have $a \equiv x \pmod{n}$ and $x \equiv c \pmod{n}$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c].

PROOF.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$.

Let $x \in [a] \cap [c]$.

So, we have $x \equiv a \pmod{n}$ and $x \equiv c \pmod{n}$.

By symmetry, we have $a \equiv x \pmod{n}$ and $x \equiv c \pmod{n}$.

By transitivity we have $a \equiv c \pmod{n}$.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c].

PROOF.

Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$.

Let $x \in [a] \cap [c]$.

So, we have $x \equiv a \pmod{n}$ and $x \equiv c \pmod{n}$.

By symmetry, we have $a \equiv x \pmod{n}$ and $x \equiv c \pmod{n}$.

By transitivity we have $a \equiv c \pmod{n}$.

By our previous theorem, we now have that [a] = [c].

Corollary

Let $1 < n \in \mathbb{Z}$.

- **1** If $a \in \mathbb{Z}$ and a = nq + r (e.g. r could be the remainder produced when a is divided by n.), then [a] = [r].
- 2 There are exactly n distinct congruence classes modulo n, namely $[0], [1], \ldots, [n-1]$.

(1): Suppose that a = nq + r.

(1): Suppose that a = nq + r.

Then a - r = nq.

(1): Suppose that a = nq + r.

Then a - r = nq.

Thus, $a \equiv r \pmod{n}$.

(1): Suppose that a = nq + r.

Then a - r = nq.

Thus, $a \equiv r \pmod{n}$.

So, by our theorem, [a] = [r].

- (1): Suppose that a = nq + r.
- Then a r = nq.
- Thus, $a \equiv r \pmod{n}$.
- So, by our theorem, [a] = [r].
- (2): Suppose that $a \in \mathbb{Z}$.

- (1): Suppose that a = nq + r.
- Then a r = nq.
- Thus, $a \equiv r \pmod{n}$.
- So, by our theorem, [a] = [r].
- (2): Suppose that $a \in \mathbb{Z}$.
- Then we can write a = nq + r with $0 \le r \le (n-1)$.

- (1): Suppose that a = nq + r.
- Then a r = nq.
- Thus, $a \equiv r \pmod{n}$.
- So, by our theorem, [a] = [r].
- (2): Suppose that $a \in \mathbb{Z}$.
- Then we can write a = nq + r with $0 \le r \le (n 1)$.
- So, it follows from part (1) that [a] = [r].

(1): Suppose that a = nq + r.

Then a - r = nq.

Thus, $a \equiv r \pmod{n}$.

So, by our theorem, [a] = [r].

(2): Suppose that $a \in \mathbb{Z}$.

Then we can write a = nq + r with $0 \le r \le (n - 1)$.

So, it follows from part (1) that [a] = [r].

So, we just need to see that $[0], [1], \dots, [n-1]$ are distinct.

(1): Suppose that a = nq + r.

Then a - r = nq.

Thus, $a \equiv r \pmod{n}$.

So, by our theorem, [a] = [r].

(2): Suppose that $a \in \mathbb{Z}$.

Then we can write a = nq + r with $0 \le r \le (n-1)$.

So, it follows from part (1) that [a] = [r].

So, we just need to see that $[0], [1], \dots, [n-1]$ are distinct.

Suppose that $0 \le i, j \le (n-1)$ and [i] = [j].

```
(1): Suppose that a = nq + r.
```

Then
$$a - r = nq$$
.

Thus,
$$a \equiv r \pmod{n}$$
.

So, by our theorem,
$$[a] = [r]$$
.

(2): Suppose that
$$a \in \mathbb{Z}$$
.

Then we can write
$$a = nq + r$$
 with $0 \le r \le (n-1)$.

So, it follows from part (1) that
$$[a] = [r]$$
.

So, we just need to see that
$$[0], [1], \dots, [n-1]$$
 are distinct.

Suppose that
$$0 \le i, j \le (n-1)$$
 and $[i] = [j]$.

Then
$$-n < (i - j) < n$$
 and $i \equiv j \pmod{n} \Rightarrow$

```
(1): Suppose that a = nq + r.
```

Then
$$a - r = nq$$
.

Thus,
$$a \equiv r \pmod{n}$$
.

So, by our theorem,
$$[a] = [r]$$
.

(2): Suppose that
$$a \in \mathbb{Z}$$
.

Then we can write
$$a = nq + r$$
 with $0 \le r \le (n - 1)$.

So, it follows from part (1) that
$$[a] = [r]$$
.

So, we just need to see that
$$[0], [1], \dots, [n-1]$$
 are distinct.

Suppose that
$$0 \le i, j \le (n-1)$$
 and $[i] = [j]$.

Then
$$-n < (i - j) < n$$
 and $i \equiv j \pmod{n} \Rightarrow n | (i - j)$.

```
(1): Suppose that a = nq + r.
```

Then
$$a - r = nq$$
.

Thus,
$$a \equiv r \pmod{n}$$
.

So, by our theorem,
$$[a] = [r]$$
.

(2): Suppose that
$$a \in \mathbb{Z}$$
.

Then we can write
$$a = nq + r$$
 with $0 \le r \le (n-1)$.

So, it follows from part (1) that
$$[a] = [r]$$
.

So, we just need to see that
$$[0], [1], \dots, [n-1]$$
 are distinct.

Suppose that
$$0 \le i, j \le (n-1)$$
 and $[i] = [j]$.

Then
$$-n < (i - j) < n$$
 and $i \equiv j \pmod{n} \Rightarrow n | (i - j)$.

Thus,
$$i - j = 0 \Rightarrow i = j$$
.

```
(1): Suppose that a = nq + r.
```

Then
$$a - r = nq$$
.

Thus,
$$a \equiv r \pmod{n}$$
.

So, by our theorem,
$$[a] = [r]$$
.

(2): Suppose that
$$a \in \mathbb{Z}$$
.

Then we can write
$$a = nq + r$$
 with $0 \le r \le (n - 1)$.

So, it follows from part (1) that
$$[a] = [r]$$
.

So, we just need to see that
$$[0], [1], \ldots, [n-1]$$
 are distinct.

Suppose that
$$0 \le i, j \le (n-1)$$
 and $[i] = [j]$.

Then
$$-n < (i - j) < n$$
 and $i \equiv j \pmod{n} \Rightarrow n | (i - j)$.

Thus,
$$i - j = 0 \Rightarrow i = j$$
.

Therefore
$$[0], [1], \ldots, [n-1]$$
 are distinct.

The set of all congruence classes modulo n is denoted \mathbb{Z}_n .

The set of all congruence classes modulo n is denoted \mathbb{Z}_n .

Note

From above we see that

$$\mathbb{Z}_n = \{[a] \mid a \in \mathbb{Z}\}$$

The set of all congruence classes modulo n is denoted \mathbb{Z}_n .

Note

From above we see that

$$\mathbb{Z}_n = \{[a] \mid a \in \mathbb{Z}\}\$$

= $\{[0], [1], [2], \dots, [n-1]\}.$