MTHSC 412 SECTION 2.1 –CONGRUENCE AND CONGRUENCE CLASSES Kevin James # DEFINITION Let $a, b, n \in \mathbb{Z}$ with n > 0. We say that \underline{a} is congruent to \underline{b} modulo \underline{n} and write $\underline{a} \equiv \underline{b} \pmod{n}$ when $\underline{n}|(a-\underline{b})$. ## DEFINITION Let $a, b, n \in \mathbb{Z}$ with n > 0. We say that \underline{a} is congruent to \underline{b} modulo \underline{n} and write $\underline{a} \equiv b \pmod{n}$ when $\underline{n}|(a-b)$. ## EXAMPLE - $1 \equiv 5 \pmod{4}$. - $2 \equiv 17 \pmod{3}$. - **3** $16 \equiv 4 \pmod{3}$. - **4** $1 \not\equiv 5 \pmod{3}$. #### THEOREM Let $0 < n \in \mathbb{Z}$. Then $\equiv \pmod{n}$ is an equivalence relation on \mathbb{Z} . That is, $\equiv \pmod{n}$ satisfies the following three properties. Reflexivity $x \equiv x \pmod{n}$ for all $x \in \mathbb{Z}$. Symmetry If $x \equiv y \pmod{n}$ then $y \equiv x \pmod{n}$. Transitivity If $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$ then $x \equiv z \pmod{n}$ Let n > 0 be an integer. Let n > 0 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive. Let n > 0 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x$ $(\text{mod } n) \text{ and } \equiv (\text{mod } n) \text{ is reflexive.}$ **Symmetric:** Suppose that $x \equiv y \pmod{n}$. Let n > 0 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x$ $(\text{mod } n) \text{ and } \equiv (\text{mod } n) \text{ is reflexive.}$ **Symmetric:** Suppose that $x \equiv y \pmod{n}$. Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$. Let n > 0 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive. **Symmetric:** Suppose that $x \equiv y \pmod{n}$. Then $\pi'(x, y, y) = x(x, y, y)$. Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$. So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$. Let n > 0 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive. **Symmetric:** Suppose that $x \equiv y \pmod{n}$. Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$. So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$. Thus $\equiv \pmod{n}$ is symmetric. Let n > 0 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x$ \pmod{n} and $\equiv \pmod{n}$ is reflexive. **Symmetric:** Suppose that $x \equiv y \pmod{n}$. Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$. So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$. Thus $\equiv \pmod{n}$ is symmetric. **Transitive:** Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$ Let n > 0 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive. **Symmetric:** Suppose that $x \equiv y \pmod{n}$. Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$. So, (y - x) = n(-k). Thus, n|(y - x) and $y \equiv x \pmod{n}$. Thus $\equiv \pmod{n}$ is symmetric. **Transitive:** Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$ Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$. Let n > 0 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive. **Symmetric:** Suppose that $x \equiv y \pmod{n}$. Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$. So, (y - x) = n(-k). Thus, n|(y - x) and $y \equiv x \pmod{n}$. Thus $\equiv \pmod{n}$ is symmetric. **Transitive:** Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$ Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$. So, (x-z) = (x-y) + (y-z) = n(k+m) and n|(x-z). Let n > 0 be an integer. **Reflexive:** For $x \in \mathbb{Z}$, x - x = 0 which divisible by n. So, $x \equiv x \pmod{n}$ and $m \pmod{n}$ is reflexive. **Symmetric:** Suppose that $x \equiv y \pmod{n}$. Then $n|(x-y) \Rightarrow (x-y) = nk$ for some $k \in \mathbb{Z}$. So, (y-x) = n(-k). Thus, n|(y-x) and $y \equiv x \pmod{n}$. Thus $\equiv \pmod{n}$ is symmetric. **Transitive:** Suppose that $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$ Then (x - y) = nk and (y - z) = nm for some $k, m \in \mathbb{Z}$. So, (x-z) = (x-y) + (y-z) = n(k+m) and n|(x-z). Thus $x \equiv z \pmod{n}$ and $\equiv \pmod{n}$ is transitive. ## THEOREM If $$a \equiv b \pmod{n}$$ and $x \in \mathbb{Z}$ then $$a + x \equiv b + x \pmod{n}$$ and $ax \equiv bx \pmod{n}$. #### THEOREM If $$a \equiv b \pmod{n}$$ and $x \in \mathbb{Z}$ then $$a + x \equiv b + x \pmod{n}$$ and $ax \equiv bx \pmod{n}$. # Proof. Suppose that $a \equiv b \pmod{n}$. #### THEOREM If $a \equiv b \pmod{n}$ and $x \in \mathbb{Z}$ then $$a + x \equiv b + x \pmod{n}$$ and $ax \equiv bx \pmod{n}$. # Proof. Suppose that $a \equiv b \pmod{n}$. Then (a - b) = nk for some $k \in \mathbb{Z}$. #### THEOREM If $$a \equiv b \pmod{n}$$ and $x \in \mathbb{Z}$ then $$a + x \equiv b + x \pmod{n}$$ and $ax \equiv bx \pmod{n}$. # Proof. Suppose that $a \equiv b \pmod{n}$. Then (a - b) = nk for some $k \in \mathbb{Z}$. Thus (a + x) - (b + x) = a - b = nk #### Theorem If $$a \equiv b \pmod{n}$$ and $x \in \mathbb{Z}$ then $$a + x \equiv b + x \pmod{n}$$ and $ax \equiv bx \pmod{n}$. ## Proof. Suppose that $$a \equiv b \pmod{n}$$. Then $(a - b) = nk$ for some $k \in \mathbb{Z}$. Thus $(a + x) - (b + x) = a - b = nk$ and $ax - bx = x(a - b) = xnk$ and the result follows. ## THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. ## THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. #### Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. ## THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. #### Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. ## THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. ## Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. So, $$(a+c)-(b+d)=$$ ## THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. ## Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. So, $$(a + c) - (b + d) = (a - b) + (c - d) =$$ ## THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. ## Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. So, $$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$. #### THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. ## Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$. So, $$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$. Thus, $a + c \equiv b + d \pmod{n}$. #### THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. ## Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$. So, $$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$. Thus, $a + c \equiv b + d \pmod{n}$. $$ac - bd =$$ #### THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. ## Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$. So, $$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$. Thus, $a + c \equiv b + d \pmod{n}$. $$ac - bd = ac - bc + bc - bd =$$ ## THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. ## Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$. So, $$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$. Thus, $a + c \equiv b + d \pmod{n}$. $$ac-bd = ac-bc+bc-bd = (a-b)c+b(c-d)$$ ## THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. ## Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$. So, $$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$. Thus, $a + c \equiv b + d \pmod{n}$. $$ac-bd = ac-bc+bc-bd = (a-b)c+b(c-d)$$ = $njc+bnk = n(jc+bk)$. ## THEOREM Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $$a + c \equiv b + d \pmod{n}$$ and $ac \equiv bd \pmod{n}$. #### Proof. Suppose that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then a - b = nj and c - d = nk for some $j, k \in \mathbb{Z}$. So, $$(a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k)$$. Thus, $a + c \equiv b + d \pmod{n}$. Similarly, we have $$ac-bd = ac-bc+bc-bd = (a-b)c+b(c-d)$$ = $njc+bnk = n(jc+bk)$. Thus $ac \equiv bd \pmod{n}$. # DEFINITION Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$. ## DEFINITION Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$. $$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$ ## **Definition** Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$. $$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$ $$= \{b \in \mathbb{Z} \mid n | (b-a)\}$$ ## **Definition** Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$. $$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$ $$= \{b \in \mathbb{Z} \mid n | (b - a)\}$$ $$= \{b \in \mathbb{Z} \mid (b - a) = nk \text{ for some } k \in \mathbb{Z}.\}$$ ## DEFINITION Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$. $$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$ $$= \{b \in \mathbb{Z} \mid n | (b - a)\}$$ $$= \{b \in \mathbb{Z} \mid (b - a) = nk \text{ for some } k \in \mathbb{Z}.\}$$ $$= \{a + nk \mid k \in \mathbb{Z}\}.$$ Let $0 < n \in \mathbb{Z}$. Then for any $a \in \mathbb{Z}$ we define the congruence class of a modulo n as $[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$. #### Note $$[a] = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}$$ $$= \{b \in \mathbb{Z} \mid n | (b - a)\}$$ $$= \{b \in \mathbb{Z} \mid (b - a) = nk \text{ for some } k \in \mathbb{Z}.\}$$ $$= \{a + nk \mid k \in \mathbb{Z}\}.$$ ### EXAMPLE Suppose n = 5. Then [9] is an infinite set which contains -6,-1,4,9,14,19 and 24. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. ### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. ### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. ## Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Let $x \in [a]$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. ### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Let $x \in [a]$. Then $x \equiv a \pmod{n}$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. #### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Let $x \in [a]$. Then $x \equiv a \pmod{n}$. Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. #### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Let $x \in [a]$. Then $x \equiv a \pmod{n}$. Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$. Thus $x \in [c]$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. #### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Let $x \in [a]$. Then $x \equiv a \pmod{n}$. Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$. Thus $x \in [c]$. We have now shown that $[a] \subseteq [c]$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. #### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Let $x \in [a]$. Then $x \equiv a \pmod{n}$. Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$. Thus $x \in [c]$. We have now shown that $[a] \subseteq [c]$. Similarly, we can show that $[c] \subseteq [a]$ and so we can conclude that [a] = [c]. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. #### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Let $x \in [a]$. Then $x \equiv a \pmod{n}$. Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$. Thus $x \in [c]$. We have now shown that $[a] \subseteq [c]$. Similarly, we can show that $[c] \subseteq [a]$ and so we can conclude that [a] = [c]. (\Leftarrow) : Suppose now that [a] = [c]. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. #### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Let $x \in [a]$. Then $x \equiv a \pmod{n}$. Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$. Thus $x \in [c]$. We have now shown that $[a] \subseteq [c]$. Similarly, we can show that $[c] \subseteq [a]$ and so we can conclude that [a] = [c]. (\Leftarrow) : Suppose now that [a] = [c]. By reflexivity, $a \in [a] = [c]$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Then $a \equiv c \pmod{n}$ if and only if [a] = [c]. #### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. (\Rightarrow) : Suppose that $a \equiv c \pmod{n}$. Let $x \in [a]$. Then $x \equiv a \pmod{n}$. Since $a \equiv c \pmod{n}$ and since $\equiv \pmod{n}$ is transitive, $x \equiv c \pmod{n}$. Thus $x \in [c]$. We have now shown that $[a] \subseteq [c]$. Similarly, we can show that $[c] \subseteq [a]$ and so we can conclude that [a] = [c]. (\Leftarrow) : Suppose now that [a] = [c]. By reflexivity, $a \in [a] = [c]$. Thus, $a \equiv c \pmod{n}$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c]. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c]. #### Proof. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c]. #### PROOF. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$. Let $x \in [a] \cap [c]$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c]. ### PROOF. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$. Let $x \in [a] \cap [c]$. So, we have $x \equiv a \pmod{n}$ and $x \equiv c \pmod{n}$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c]. ### PROOF. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$. Let $x \in [a] \cap [c]$. So, we have $x \equiv a \pmod{n}$ and $x \equiv c \pmod{n}$. By symmetry, we have $a \equiv x \pmod{n}$ and $x \equiv c \pmod{n}$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c]. #### PROOF. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$. Let $x \in [a] \cap [c]$. So, we have $x \equiv a \pmod{n}$ and $x \equiv c \pmod{n}$. By symmetry, we have $a \equiv x \pmod{n}$ and $x \equiv c \pmod{n}$. By transitivity we have $a \equiv c \pmod{n}$. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$. Either $[a] \cap [c] = \emptyset$ or [a] = [c]. #### PROOF. Suppose that $0 < n \in \mathbb{Z}$ and $a, c \in \mathbb{Z}$ and that $[a] \cap [c] \neq \emptyset$. Let $x \in [a] \cap [c]$. So, we have $x \equiv a \pmod{n}$ and $x \equiv c \pmod{n}$. By symmetry, we have $a \equiv x \pmod{n}$ and $x \equiv c \pmod{n}$. By transitivity we have $a \equiv c \pmod{n}$. By our previous theorem, we now have that [a] = [c]. ## Corollary Let $1 < n \in \mathbb{Z}$. - **1** If $a \in \mathbb{Z}$ and a = nq + r (e.g. r could be the remainder produced when a is divided by n.), then [a] = [r]. - 2 There are exactly n distinct congruence classes modulo n, namely $[0], [1], \ldots, [n-1]$. (1): Suppose that a = nq + r. (1): Suppose that a = nq + r. Then a - r = nq. (1): Suppose that a = nq + r. Then a - r = nq. Thus, $a \equiv r \pmod{n}$. (1): Suppose that a = nq + r. Then a - r = nq. Thus, $a \equiv r \pmod{n}$. So, by our theorem, [a] = [r]. - (1): Suppose that a = nq + r. - Then a r = nq. - Thus, $a \equiv r \pmod{n}$. - So, by our theorem, [a] = [r]. - (2): Suppose that $a \in \mathbb{Z}$. - (1): Suppose that a = nq + r. - Then a r = nq. - Thus, $a \equiv r \pmod{n}$. - So, by our theorem, [a] = [r]. - (2): Suppose that $a \in \mathbb{Z}$. - Then we can write a = nq + r with $0 \le r \le (n-1)$. - (1): Suppose that a = nq + r. - Then a r = nq. - Thus, $a \equiv r \pmod{n}$. - So, by our theorem, [a] = [r]. - (2): Suppose that $a \in \mathbb{Z}$. - Then we can write a = nq + r with $0 \le r \le (n 1)$. - So, it follows from part (1) that [a] = [r]. (1): Suppose that a = nq + r. Then a - r = nq. Thus, $a \equiv r \pmod{n}$. So, by our theorem, [a] = [r]. (2): Suppose that $a \in \mathbb{Z}$. Then we can write a = nq + r with $0 \le r \le (n - 1)$. So, it follows from part (1) that [a] = [r]. So, we just need to see that $[0], [1], \dots, [n-1]$ are distinct. (1): Suppose that a = nq + r. Then a - r = nq. Thus, $a \equiv r \pmod{n}$. So, by our theorem, [a] = [r]. (2): Suppose that $a \in \mathbb{Z}$. Then we can write a = nq + r with $0 \le r \le (n-1)$. So, it follows from part (1) that [a] = [r]. So, we just need to see that $[0], [1], \dots, [n-1]$ are distinct. Suppose that $0 \le i, j \le (n-1)$ and [i] = [j]. ``` (1): Suppose that a = nq + r. ``` Then $$a - r = nq$$. Thus, $$a \equiv r \pmod{n}$$. So, by our theorem, $$[a] = [r]$$. (2): Suppose that $$a \in \mathbb{Z}$$. Then we can write $$a = nq + r$$ with $0 \le r \le (n-1)$. So, it follows from part (1) that $$[a] = [r]$$. So, we just need to see that $$[0], [1], \dots, [n-1]$$ are distinct. Suppose that $$0 \le i, j \le (n-1)$$ and $[i] = [j]$. Then $$-n < (i - j) < n$$ and $i \equiv j \pmod{n} \Rightarrow$ ``` (1): Suppose that a = nq + r. ``` Then $$a - r = nq$$. Thus, $$a \equiv r \pmod{n}$$. So, by our theorem, $$[a] = [r]$$. (2): Suppose that $$a \in \mathbb{Z}$$. Then we can write $$a = nq + r$$ with $0 \le r \le (n - 1)$. So, it follows from part (1) that $$[a] = [r]$$. So, we just need to see that $$[0], [1], \dots, [n-1]$$ are distinct. Suppose that $$0 \le i, j \le (n-1)$$ and $[i] = [j]$. Then $$-n < (i - j) < n$$ and $i \equiv j \pmod{n} \Rightarrow n | (i - j)$. ``` (1): Suppose that a = nq + r. ``` Then $$a - r = nq$$. Thus, $$a \equiv r \pmod{n}$$. So, by our theorem, $$[a] = [r]$$. (2): Suppose that $$a \in \mathbb{Z}$$. Then we can write $$a = nq + r$$ with $0 \le r \le (n-1)$. So, it follows from part (1) that $$[a] = [r]$$. So, we just need to see that $$[0], [1], \dots, [n-1]$$ are distinct. Suppose that $$0 \le i, j \le (n-1)$$ and $[i] = [j]$. Then $$-n < (i - j) < n$$ and $i \equiv j \pmod{n} \Rightarrow n | (i - j)$. Thus, $$i - j = 0 \Rightarrow i = j$$. ``` (1): Suppose that a = nq + r. ``` Then $$a - r = nq$$. Thus, $$a \equiv r \pmod{n}$$. So, by our theorem, $$[a] = [r]$$. (2): Suppose that $$a \in \mathbb{Z}$$. Then we can write $$a = nq + r$$ with $0 \le r \le (n - 1)$. So, it follows from part (1) that $$[a] = [r]$$. So, we just need to see that $$[0], [1], \ldots, [n-1]$$ are distinct. Suppose that $$0 \le i, j \le (n-1)$$ and $[i] = [j]$. Then $$-n < (i - j) < n$$ and $i \equiv j \pmod{n} \Rightarrow n | (i - j)$. Thus, $$i - j = 0 \Rightarrow i = j$$. Therefore $$[0], [1], \ldots, [n-1]$$ are distinct. The set of all congruence classes modulo n is denoted \mathbb{Z}_n . The set of all congruence classes modulo n is denoted \mathbb{Z}_n . ## Note From above we see that $$\mathbb{Z}_n = \{[a] \mid a \in \mathbb{Z}\}$$ The set of all congruence classes modulo n is denoted \mathbb{Z}_n . ### Note From above we see that $$\mathbb{Z}_n = \{[a] \mid a \in \mathbb{Z}\}\$$ = $\{[0], [1], [2], \dots, [n-1]\}.$