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Definition

Let a, b, n ∈ Z with n > 0. We say that
a is congruent to b modulo n and write a ≡ b (mod n) when
n|(a− b).

Example

1 1 ≡ 5 (mod 4).

2 2 ≡ 17 (mod 3).

3 16 ≡ 4 (mod 3).

4 1 6≡ 5 (mod 3).
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Theorem

Let 0 < n ∈ Z. Then ≡ (mod n) is an equivalence relation on Z.
That is, ≡ (mod n) satisfies the following three properties.

Reflexivity x ≡ x (mod n) for all x ∈ Z.

Symmetry If x ≡ y (mod n) then y ≡ x (mod n).

Transitivity If x ≡ y (mod n) and y ≡ z (mod n) then x ≡ z
(mod n)
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Proof.

Let n > 0 be an integer.

Reflexive: For x ∈ Z, x − x = 0 which divisible by n. So, x ≡ x
(mod n) and ≡ (mod n) is reflexive.
Symmetric: Suppose that x ≡ y (mod n).
Then n|(x − y)⇒ (x − y) = nk for some k ∈ Z.
So, (y − x) = n(−k). Thus, n|(y − x) and y ≡ x (mod n).
Thus ≡ (mod n) is symmetric.
Transitive: Suppose that x ≡ y (mod n) and y ≡ z (mod n)
Then (x − y) = nk and (y − z) = nm for some k, m ∈ Z.
So, (x − z) = (x − y) + (y − z) = n(k + m) and n|(x − z).
Thus x ≡ z (mod n) and ≡ (mod n) is transitive.
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Addition and Multiplication Properties

Theorem

If a ≡ b (mod n) and x ∈ Z then

a + x ≡ b + x (mod n) and ax ≡ bx (mod n).

Proof.

Suppose that a ≡ b (mod n). Then (a− b) = nk for some k ∈ Z.
Thus (a + x)− (b + x) = a− b = nk and
ax − bx = x(a− b) = xnk and the result follows.
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Substitution

Theorem

Suppose that a ≡ b (mod n) and c ≡ d (mod n). Then

a + c ≡ b + d (mod n) and ac ≡ bd (mod n).

Proof.

Suppose that a ≡ b (mod n) and c ≡ d (mod n).
Then a− b = nj and c − d = nk for some j , k ∈ Z.
So, (a + c)− (b + d) = (a− b) + (c − d) = nj + nk = n(j + k).
Thus, a + c ≡ b + d (mod n).
Similarly, we have

ac − bd = ac − bc + bc − bd = (a− b)c + b(c − d)

= njc + bnk = n(jc + bk).

Thus ac ≡ bd (mod n).
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Definition

Let 0 < n ∈ Z. Then for any a ∈ Z we define the
congruence class of a modulo n as [a] = {b ∈ Z | b ≡ a (mod n)}.

Note

[a] = {b ∈ Z | b ≡ a (mod n)}
= {b ∈ Z | n|(b − a)}
= {b ∈ Z | (b − a) = nk for some k ∈ Z.}
= {a + nk | k ∈ Z}.

Example

Suppose n = 5. Then [9] is an infinite set which contains
-6,-1,4,9,14,19 and 24.
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Theorem

Suppose that 0 < n ∈ Z and a, c ∈ Z. Then a ≡ c (mod n) if and
only if [a] = [c].

Proof.

Suppose that 0 < n ∈ Z and a, c ∈ Z.
(⇒): Suppose that a ≡ c (mod n).
Let x ∈ [a].
Then x ≡ a (mod n).
Since a ≡ c (mod n) and since ≡ (mod n) is transitive, x ≡ c
(mod n).
Thus x ∈ [c].
We have now shown that [a] ⊆ [c].
Similarly, we can show that [c] ⊆ [a] and so we can conclude that
[a] = [c].
(⇐): Suppose now that [a] = [c].
By reflexivity, a ∈ [a] = [c].
Thus, a ≡ c (mod n).
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Corollary

Suppose that 0 < n ∈ Z and a, c ∈ Z. Either [a] ∩ [c] = ∅ or
[a] = [c].

Proof.

Suppose that 0 < n ∈ Z and a, c ∈ Z and that [a] ∩ [c] 6= ∅.
Let x ∈ [a] ∩ [c].
So, we have x ≡ a (mod n) and x ≡ c (mod n).
By symmetry, we have a ≡ x (mod n) and x ≡ c (mod n).
By transitivity we have a ≡ c (mod n).
By our previous theorem, we now have that [a] = [c].
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Corollary

Let 1 < n ∈ Z.

1 If a ∈ Z and a = nq + r (e.g. r could be the remainder
produced when a is divided by n.), then [a] = [r ].

2 There are exactly n distinct congruence classes modulo n,
namely [0], [1], . . . , [n − 1].
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Proof.

(1): Suppose that a = nq + r .

Then a− r = nq.
Thus, a ≡ r (mod n).
So, by our theorem, [a] = [r ].
(2): Suppose that a ∈ Z.
Then we can write a = nq + r with 0 ≤ r ≤ (n − 1).
So, it follows from part (1) that [a] = [r ].
So, we just need to see that [0], [1], . . . , [n − 1] are distinct.
Suppose that 0 ≤ i , j ≤ (n − 1) and [i ] = [j ].
Then −n < (i − j) < n and i ≡ j (mod n)⇒ n|(i − j).
Thus, i − j = 0⇒ i = j .
Therefore [0], [1], . . . , [n − 1] are distinct.
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Definition

The set of all congruence classes modulo n is denoted Zn.

Note

From above we see that

Zn = {[a] | a ∈ Z}
= {[0], [1], [2], . . . , [n − 1]}.
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