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Let a, b, n € Z with n > 0. We say that
a is congruent to b modulo n and write a = b (mod n) when

n|(a — b).
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DEFINITION

Let a, b, n € Z with n > 0. We say that
a is congruent to b modulo n and write a = b (mod n) when

n|(a — b).

4

EXAMPLE

©® 1=5 (mod 4).
® 2 =17 (mod 3).
® 16 =4 (mod 3).
® 1#5 (mod 3).
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THEOREM

Let 0 < neZ. Then = (mod n) is an equivalence relation on Z.
That is, = (mod n) satisfies the following three properties.

REFLEXIVITY x = x (mod n) for all x € Z.
SYMMETRY If x =y (mod n) then y = x (mod n).

TRANSITIVITY If x =y (mod n) and y = z (mod n) then x = z
(mod n)
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PROOF.

Let n > 0 be an integer.

Kevin James MTHSC 412 Section 2.1 —Congruence and Congruence Classe



PROOF.

Let n > 0 be an integer.
Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.
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PROOF.

Let n > 0 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).
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PROOF.

Let n > 0 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x —y) = (x — y) = nk for some k € Z.
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PROOF.

Let n > 0 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x —y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y —x) and y = x (mod n).
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PROOF.

Let n > 0 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x —y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y —x) and y = x (mod n).
Thus = (mod n) is symmetric.
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PROOF.

Let n > 0 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x —y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y —x) and y = x (mod n).
Thus = (mod n) is symmetric.

Transitive: Suppose that x = y (mod n) and y = z (mod n)
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PROOF.

Let n > 0 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x —y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y —x) and y = x (mod n).
Thus = (mod n) is symmetric.

Transitive: Suppose that x = y (mod n) and y = z (mod n)
Then (x — y) = nk and (y — z) = nm for some k, m € Z.
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PROOF.

Let n > 0 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x —y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y —x) and y = x (mod n).
Thus = (mod n) is symmetric.

Transitive: Suppose that x = y (mod n) and y = z (mod n)
Then (x — y) = nk and (y — z) = nm for some k, m € Z.

So, (x—z)=(x—y)+(y —z) = n(k + m) and n|(x — z).
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PROOF.

Let n > 0 be an integer.

Reflexive: For x € Z, x — x = 0 which divisible by n. So, x = x
(mod n) and = (mod n) is reflexive.

Symmetric: Suppose that x =y (mod n).

Then n|(x —y) = (x — y) = nk for some k € Z.

So, (y — x) = n(—k). Thus, n|(y —x) and y = x (mod n).
Thus = (mod n) is symmetric.

Transitive: Suppose that x = y (mod n) and y = z (mod n)
Then (x — y) = nk and (y — z) = nm for some k, m € Z.

So, (x—z)=(x—y)+(y —z) = n(k + m) and n|(x — z).
Thus x = z (mod n) and = (mod n) is transitive. O
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ADDITION AND MULTIPLICATION PROPERTIES

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).
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ADDITION AND MULTIPLICATION PROPERTIES

THEOREM

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).

PROOF.

Suppose that a = b (mod n).
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ADDITION AND MULTIPLICATION PROPERTIES

THEOREM

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).

PROOF.

Suppose that a= b (mod n). Then (a — b) = nk for some k € Z.
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ADDITION AND MULTIPLICATION PROPERTIES

THEOREM

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).

PROOF.

Suppose that a= b (mod n). Then (a — b) = nk for some k € Z.
Thus (a+x) — (b+x) =a— b =nk

| N
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ADDITION AND MULTIPLICATION PROPERTIES

THEOREM

If a= b (mod n) and x € Z then

a+x=b+x (modn) and ax=bx (mod n).

PROOF.

Suppose that a= b (mod n). Then (a — b) = nk for some k € Z.
Thus (a+x) — (b+ x) = a— b= nk and

ax — bx = x(a — b) = xnk and the result follows. O

| N

y
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SUBSTITUTION

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

Suppose that a= b (mod n) and ¢ = d (mod n).
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

Suppose that a= b (mod n) and ¢ = d (mod n).
Then a— b= nj and ¢ — d = nk for some j, k € 7Z.
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

| 5\

PROOF.

Suppose that a= b (mod n) and ¢ = d (mod n).
Then a— b= nj and ¢ — d = nk for some j, k € 7Z.
So, (a+c)—(b+d)=
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

Suppose that a= b (mod n) and ¢ = d (mod n).
Then a— b= nj and ¢ — d = nk for some j, k € 7Z.
So, (a+c)—(b+d)=(a—b)+(c—d)=

| 5\
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

Suppose that a= b (mod n) and ¢ = d (mod n).

Then a— b= nj and ¢ — d = nk for some j, k € 7Z.

So, (a+c¢c)—(b+d)=(a—b)+ (c—d)=nj+ nk=n(+ k).

| 5\
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

Suppose that a= b (mod n) and ¢ = d (mod n).

Then a— b= nj and ¢ — d = nk for some j, k € 7Z.

So, (a+c¢c)—(b+d)=(a—b)+ (c—d)=nj+ nk=n(+ k).
Thus, a4+ c=b+d (mod n).

| 5\
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

| 5\

Suppose that a= b (mod n) and ¢ = d (mod n).

Then a— b= nj and ¢ — d = nk for some j, k € 7Z.

So, (a+c¢c)—(b+d)=(a—b)+ (c—d)=nj+ nk=n(+ k).
Thus, a4+ c=b+d (mod n).

Similarly, we have

ac—bd =
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

| 5\

Suppose that a= b (mod n) and ¢ = d (mod n).

Then a— b= nj and ¢ — d = nk for some j, k € 7Z.

So, (a+c¢c)—(b+d)=(a—b)+ (c—d)=nj+ nk=n(+ k).
Thus, a4+ c=b+d (mod n).

Similarly, we have

ac—bd = ac— bc+ bc— bd =
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

| 5\

Suppose that a= b (mod n) and ¢ = d (mod n).

Then a— b= nj and ¢ — d = nk for some j, k € 7Z.

So, (a+c¢c)—(b+d)=(a—b)+ (c—d)=nj+ nk=n(+ k).
Thus, a4+ c=b+d (mod n).

Similarly, we have

ac—bd = ac—bc+ bc—bd=(a—b)c+ b(c—d)
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

| 5\

Suppose that a= b (mod n) and ¢ = d (mod n).

Then a— b= nj and ¢ — d = nk for some j, k € 7Z.

So, (a+c¢c)—(b+d)=(a—b)+ (c—d)=nj+ nk=n(+ k).
Thus, a4+ c=b+d (mod n).

Similarly, we have

ac—bd = ac—bc+ bc—bd=(a—b)c+ b(c—d)
= njc + bnk = n(jc + bk).
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SUBSTITUTION

THEOREM

Suppose that a = b (mod n) and ¢ = d (mod n). Then

a+c=b+d (modn) and ac=bd (mod n).

PROOF.

| 5\

Suppose that a= b (mod n) and ¢ = d (mod n).

Then a— b= nj and ¢ — d = nk for some j, k € 7Z.

So, (a+c¢c)—(b+d)=(a—b)+ (c—d)=nj+ nk=n(+ k).
Thus, a4+ c=b+d (mod n).

Similarly, we have

ac—bd = ac—bc+ bc—bd=(a—b)c+ b(c—d)
= njc + bnk = n(jc + bk).

Thus ac = bd (mod n). O
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Let 0 < n € Z. Then for any a € Z we define the
congruence class of a modulo nas [a] ={b€Z | b= a (mod n)}.
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Let 0 < n € Z. Then for any a € Z we define the
congruence class of a modulo nas [a] ={b€Z | b= a (mod n)}.

[a] = {beZ|b=a (modn)}
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Let 0 < n € Z. Then for any a € Z we define the
congruence class of a modulo nas [a] ={b€Z | b= a (mod n)}.

[a] = {beZ|b=a (modn)}
= {beZ|n|(b-a)}
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Let 0 < n € Z. Then for any a € Z we define the
congruence class of a modulo nas [a] ={b€Z | b= a (mod n)}.

[a] = {beZ|b=a (modn)}
{beZ|n|(b-a)}
{beZ| (b— a) = nk for some k € Z.}
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Let 0 < n € Z. Then for any a € Z we define the
congruence class of a modulo nas [a] ={b€Z | b= a (mod n)}.

[a] = {beZ|b=a (modn)}
{beZ|n|(b-a)}

{beZ| (b— a) = nk for some k € Z.}
= {a+nk|keZ).
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Let 0 < n € Z. Then for any a € Z we define the
congruence class of a modulo nas [a] ={b€Z | b= a (mod n)}.

[a] = {beZ|b=a (modn)}
= {beZ]n|(b-a)}
{beZ| (b— a) = nk for some k € Z.}
{a+nk|keZ).

v

EXAMPLE

Suppose n = 5. Then [9] is an infinite set which contains
-6,-1,4,9,14,19 and 24.

N
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Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].
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THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

PROOF.

Suppose that 0 < n € Z and a, c € Z.

A
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THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

PROOF.

Suppose that 0 < n € Z and a, c € Z.
(=): Suppose that a = ¢ (mod n).

| A

Kevin James MTHSC 412 Section 2.1 —Congruence and Congruence Classe



THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

PROOF.

Suppose that 0 < n € Z and a, c € Z.
(=): Suppose that a = ¢ (mod n).
Let x € [a].

| A
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THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

PROOF.

Suppose that 0 < n € Z and a, c € Z.
(=): Suppose that a = ¢ (mod n).
Let x € [a].

Then x = a (mod n).

| A
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THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

PROOF.

Suppose that 0 < n € Z and a, c € Z.

(=): Suppose that a = ¢ (mod n).

Let x € [a].

Then x = a (mod n).

Since a = ¢ (mod n) and since = (mod n) is transitive, x = ¢
(mod n).

| A
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THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

PROOF.

Suppose that 0 < n € Z and a, c € Z.

(=): Suppose that a = ¢ (mod n).

Let x € [a].

Then x = a (mod n).

Since a = ¢ (mod n) and since = (mod n) is transitive, x = ¢
(mod n).

Thus x € [c].

| A
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THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

| A

PROOF.

Suppose that 0 < n € Z and a, c € Z.

(=): Suppose that a = ¢ (mod n).

Let x € [a].

Then x = a (mod n).

Since a = ¢ (mod n) and since = (mod n) is transitive, x = ¢
(mod n).

Thus x € [c].

We have now shown that [a] C [c].
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THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

| A

PROOF.

Suppose that 0 < n € Z and a, c € Z.

(=): Suppose that a = ¢ (mod n).

Let x € [a].

Then x = a (mod n).

Since a = ¢ (mod n) and since = (mod n) is transitive, x = ¢
(mod n).

Thus x € [c].

We have now shown that [a] C [c].

Similarly, we can show that [c] C [a] and so we can conclude that

[a] = [e].
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THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

PROOF.

Suppose that 0 < n € Z and a, c € Z.

(=): Suppose that a = ¢ (mod n).

Let x € [a].

Then x = a (mod n).

Since a = ¢ (mod n) and since = (mod n) is transitive, x = ¢
(mod n).

Thus x € [c].

We have now shown that [a] C [c].

Similarly, we can show that [c] C [a] and so we can conclude that
[a] = [c].

(«<=): Suppose now that [a] = [c].

Kevin James MTHSC 412 Section 2.1 —Congruence and Congruence Classe



THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

PROOF.

Suppose that 0 < n € Z and a, c € Z.
(=): Suppose that a = ¢ (mod n).
Let x € [a].

Then x =
Since a
(mod n).

Thus x € [c].

We have now shown that [a] C [c].

Similarly, we can show that [c] C [a] and so we can conclude that
[a] = [c].

(«<=): Suppose now that [a] = [c].

By reflexivity, a € [a] = [c].

a (mod n).
¢ (mod n) and since = (mod n) is transitive, x = ¢
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THEOREM

Suppose that 0 < n € Z and a,c € Z. Then a = c (mod n) if and
only if [a] = [c].

PROOF.

Suppose that 0 < n € Z and a, c € Z.

(=): Suppose that a = ¢ (mod n).

Let x € [a].

Then x = a (mod n).

Since a = ¢ (mod n) and since = (mod n) is transitive, x = ¢
(mod n).

Thus x € [c].

We have now shown that [a] C [c].

Similarly, we can show that [c] C [a] and so we can conclude that
[a] = [c].

(«<=): Suppose now that [a] = [c].

By reflexivity, a € [a] = [c].

Thus, a = ¢ (mod n). O
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COROLLARY

Suppose that 0 < n € Z and a, c € Z. Either [a] N [c] =0 or

[a] = [e]-
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COROLLARY

Suppose that 0 < n € Z and a, c € Z. Either [a] N [c] =0 or

a] =[] |

Suppose that 0 < n € Z and a, ¢ € Z and that [a] N [c] # 0.
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COROLLARY

Suppose that 0 < n € Z and a, c € Z. Either [a] N [c] =0 or

[a] = [e].

| A

PROOF.
Suppose that 0 < n € Z and a, ¢ € Z and that [a] N [c] # 0.
Let x € [a] N [c].
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COROLLARY

Suppose that 0 < n € Z and a, c € Z. Either [a] N [c] =0 or

[a] = [e].

| A

PROOF.

Suppose that 0 < n € Z and a, ¢ € Z and that [a] N [c] # 0.
Let x € [a] N [c].

So, we have x = a (mod n) and x = ¢ (mod n).
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COROLLARY

Suppose that 0 < n € Z and a, c € Z. Either [a] N [c] =0 or

[a] = [e].

| A

PROOF.

Suppose that 0 < n € Z and a, ¢ € Z and that [a] N [c] # 0.
Let x € [a] N [c].

So, we have x = a (mod n) and x = ¢ (mod n).

By symmetry, we have a = x (mod n) and x = ¢ (mod n).
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COROLLARY

Suppose that 0 < n € Z and a, c € Z. Either [a] N [c] =0 or

[a] = [e].

| \

PROOF.

Suppose that 0 < n € Z and a, ¢ € Z and that [a] N [c] # 0.
Let x € [a] N [c].

So, we have x = a (mod n) and x = ¢ (mod n).

By symmetry, we have a = x (mod n) and x = ¢ (mod n).
By transitivity we have a = ¢ (mod n).
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COROLLARY

Suppose that 0 < n € Z and a, c € Z. Either [a] N [c] =0 or

[a] = [e].

PROOF.

Suppose that 0 < n € Z and a, ¢ € Z and that [a] N [c] # 0.

Let x € [a] N [c].

So, we have x = a (mod n) and x = ¢ (mod n).

By symmetry, we have a = x (mod n) and x = ¢ (mod n).

By transitivity we have a = ¢ (mod n).

By our previous theorem, we now have that [a] = [c]. O

| \

\
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COROLLARY
Letl < neZ.

©® IfacZ and a=nq+r (e.g. r could be the remainder
produced when a is divided by n.), then [a] = [r].

® There are exactly n distinct congruence classes modulo n,
namely [0],[1],...,[n—1].
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PROOF.

(1): Suppose that a = ng + r.
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PROOF.

(1): Suppose that a = ng + r.
Then a—r = ngq.
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PROOF.

(1): Suppose that a = ng + r.
Then a—r = ngq.

Thus, a=r (mod n).
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PROOF.

(1): Suppose that a = ng + r.
Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].
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PROOF.

(1): Suppose that a = ng + r.
Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].
(2): Suppose that a € Z.
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PROOF.

(1): Suppose that a = ng + r.

Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].

(2): Suppose that a € Z.

Then we can write a = ng + r with 0 < r < (n—1).
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PROOF.

(1): Suppose that a = ng + r.

Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].

(2): Suppose that a € Z.

Then we can write a = ng + r with 0 < r < (n—1).
So, it follows from part (1) that [a] = [r].
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PROOF.

(1): Suppose that a = ng + r.

Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].

(2): Suppose that a € Z.

Then we can write a=ng + r with 0 < r < (n—1).

So, it follows from part (1) that [a] = [r].

So, we just need to see that [0], [1],...,[n — 1] are distinct.
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PROOF.

(1): Suppose that a = ng + r.

Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].

(2): Suppose that a € Z.

Then we can write a=ng + r with 0 < r < (n—1).

So, it follows from part (1) that [a] = [r].

So, we just need to see that [0], [1],...,[n — 1] are distinct.
Suppose that 0 < i,j < (n—1) and [i/] = [j].
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PROOF.

(1): Suppose that a = ng + r.

Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].

(2): Suppose that a € Z.

Then we can write a = ng + r with 0 < r < (n—1).

So, it follows from part (1) that [a] = [r].

So, we just need to see that [0], [1],...,[n — 1] are distinct.
Suppose that 0 < i,j < (n—1) and [i/] = [j].

Then —n < (i—j) <nand i=j (mod n) =
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PROOF.

(1): Suppose that a = ng + r.

Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].

(2): Suppose that a € Z.

Then we can write a=ng + r with 0 < r < (n—1).

So, it follows from part (1) that [a] = [r].

So, we just need to see that [0], [1],...,[n — 1] are distinct.
Suppose that 0 < i,j < (n—1) and [i/] = [j].

Then —n < (i —j) < nand i =, (mod n) = n|(i — j).
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PROOF.

(1): Suppose that a = ng + r.

Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].

(2): Suppose that a € Z.

Then we can write a=ng + r with 0 < r < (n—1).
So, it follows from part (1) that [a] = [r].

So, we just need to see that [0], [1],...,[n — 1] are distinct.
Suppose that 0 < i,j < (n—1) and [i/] = [j].

Then —n < (i —j) < nand i =, (mod n) = n|(i — j).
Thus, i —j=0= i = .
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PROOF.

(1): Suppose that a = ng + r.

Then a—r = ngq.

Thus, a=r (mod n).

So, by our theorem, [a] = [r].

(2): Suppose that a € Z.

Then we can write a = ng + r with 0 < r < (n—1).

So, it follows from part (1) that [a] = [r].

So, we just need to see that [0], [1],...,[n — 1] are distinct.
Suppose that 0 < i,j < (n—1) and [i/] = [j].

Then —n < (i —j) < nand i =, (mod n) = n|(i — j).
Thus, i —j=0= i = .

Therefore [0],[1],. .., [n — 1] are distinct. O
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The set of all congruence classes modulo n is denoted Z,,.
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The set of all congruence classes modulo n is denoted Z,,.

From above we see that

Zn = {la]| a€Z}
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The set of all congruence classes modulo n is denoted Z,,. \

From above we see that

Zn = {la]| a€Z}
{[0]7[1]7[2]""7[”_1]}'
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