MTHSC 412 SECTION 2.2 – MODULAR ARITHMETIC

Kevin James

DEFINITION

We define addition and multiplication on \mathbb{Z}_n as follows.

$$[a] + [b] = [a + b]$$
 and $[a][b] = [ab]$.

DEFINITION

We define addition and multiplication on \mathbb{Z}_n as follows.

$$[a] + [b] = [a + b]$$
 and $[a][b] = [ab]$.

Note

We must check that this addition is well-defined since any congruence class can be represented as [a] in many ways. For example, if n=5 then [1]=[6]=[11]. In fact, for any $b\in[a]$, [a]=[b].

If
$$[a] = [b]$$
 and $[c] = [d]$, then

$$[a+c]=[b+d]$$
 and $[ac]=[bd]$.

If
$$[a] = [b]$$
 and $[c] = [d]$, then

$$[a+c]=[b+d]$$

and

$$[ac] = [bd].$$

Proof.

Suppose that
$$[a] = [b]$$
 and $[c] = [d]$.

If
$$[a] = [b]$$
 and $[c] = [d]$, then

$$[a+c]=[b+d]$$

and

$$[ac] = [bd].$$

Proof.

Suppose that [a] = [b] and [c] = [d].

Then $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

If
$$[a] = [b]$$
 and $[c] = [d]$, then

$$[a+c]=[b+d]$$

and

$$[ac] = [bd].$$

Proof.

Suppose that [a] = [b] and [c] = [d].

Then $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

Thus from theorems of the previous section, $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.

If
$$[a] = [b]$$
 and $[c] = [d]$, then

$$[a+c]=[b+d]$$

and

$$[ac] = [bd].$$

Proof.

Suppose that [a] = [b] and [c] = [d].

Then $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

Thus from theorems of the previous section, $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.

Thus, [a + c] = [b + d] and [ac] = [bd].

EXAMPLE

The addition table for \mathbb{Z}_6 is as follows.

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

EXAMPLE

The multiplication table for \mathbb{Z}_6 is as follows.

×	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Theorem

Suppose that $[a], [b], [c] \in \mathbb{Z}_n$.

- **1** Closure of addition: $[a] + [b] \in \mathbb{Z}_n$.
- **2** Associativity of addition: ([a] + [b]) + [c] = [a] + ([b] + [c]).
- **3** Commutativity of addition: [a] + [b] = [b] + [a].
- **4** Additive Identity: [a] + [0] = [0] + [a] = [a].
- **6** Additive Inverses: [a] + [-a] = [-a] + [a] = [0].
- **6** Closure of Multiplication: $[a][b] \in \mathbb{Z}_n$.
- Associativity of Multiplication: ([a][b])[c] = [a]([b][c]).
- **8** Commutativity of Multiplication: [a][b] = [b][a].
- ① Distributive Laws: [a]([b] + [c]) = [a][b] + [a][c] and ([a] + [b])[c] = [a][c] + [b][c].
- \emptyset Multiplicative Identity: [a][1] = [1][a] = [a].

EXPONENTS

Note

- We will use positive integral exponents to denote repeated multiplication as usual.
- $[a]^0 = [1].$
- **3** Given $[a] \in \mathbb{Z}_n$, if there is $[b] \in \mathbb{Z}_n$ such that [a][b] = [1], then we say that [b] is the multiplicative inverse of [a] and write $[b] = [a]^{-1}$.
- **4** For n > 0, $[a]^{-n} = ([a]^{-1})^n$.