MTHSC 412 Section 2.3 – The structure of \mathbb{Z}_p when p is prime

Kevin James

Kevin James MTHSC 412 Section 2.3 – The structure of \mathbb{Z}_p when p is prime

EXAMPLE

First, let us consider a nonprime example. Let n = 6. Note that $[2] \neq [0]$ and $[3] \neq [0]$, but [2][3] = [0]. This is very different from \mathbb{Z} .

イロン イヨン イヨン イヨン

3

EXAMPLE

First, let us consider a nonprime example. Let n = 6. Note that $[2] \neq [0]$ and $[3] \neq [0]$, but [2][3] = [0]. This is very different from \mathbb{Z} .

Theorem

If p > 1 is an integer then the following are equivalent.

- 1 p is prime.
- For any [0] ≠ [a] ∈ Z_p, the equation [a][x] = 1 has a solution in Z_p.
- **3** Whenever [a][b] = 0, either [a] = 0 or [b] = 0.

▲帰▶ ★ 国▶ ★ 国▶

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$.

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1.

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow$

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow$

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$.

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1].

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0.

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds.

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$.

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1.

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow$

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) =$

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) = ([b][a])[x] =$

Kevin James

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) = ([b][a])[x] = ([a][b])[x]$

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) = ([b][a])[x] = ([a][b])[x] =$ 0[x] = 0..

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) = ([b][a])[x] = ([a][b])[x] =$ 0[x] = 0.. $(3 \Rightarrow 1)$: Suppose that (3) holds and that d|p.

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) = ([b][a])[x] = ([a][b])[x] =$ 0[x] = 0.. $(3 \Rightarrow 1)$: Suppose that (3) holds and that d|p. Then p = dk for some $k \in \mathbb{Z}$.

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) = ([b][a])[x] = ([a][b])[x] =$ 0[x] = 0.. $(3 \Rightarrow 1)$: Suppose that (3) holds and that d|p. Then p = dk for some $k \in \mathbb{Z}$. Thus, [d][k] = [p] = [0].

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) = ([b][a])[x] = ([a][b])[x] =$ 0[x] = 0.. $(3 \Rightarrow 1)$: Suppose that (3) holds and that d|p. Then p = dk for some $k \in \mathbb{Z}$. Thus, [d][k] = [p] = [0]. So, by (3), $[d] = 0 \Rightarrow p | d \Rightarrow d = \pm p$ or

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) = ([b][a])[x] = ([a][b])[x] =$ 0[x] = 0.. $(3 \Rightarrow 1)$: Suppose that (3) holds and that d|p. Then p = dk for some $k \in \mathbb{Z}$. Thus, [d][k] = [p] = [0]. So, by (3), $[d] = 0 \Rightarrow p | d \Rightarrow d = \pm p$ or $[k] = 0 \Rightarrow p | k \Rightarrow k = \pm p \Rightarrow d = \pm 1.$

 $(1 \Rightarrow 2)$: Suppose that p is prime and that $[0] \neq [a] \in \mathbb{Z}_p$. Then (a, p) = 1. Thus there are $x, y \in \mathbb{Z}$ such that $ax + py = 1 \Rightarrow ax - 1 = p(-y) \Rightarrow ax \equiv 1 \pmod{p}$. Thus [a][x] = [1]. $(2 \Rightarrow 3)$: Suppose that (2) holds and that [a][b] = 0. If [a] = 0, then the theorem holds. Suppose that $[a] \neq 0$. By (2), there is $[x] \in \mathbb{Z}_p$ such that [a][x] = 1. So, $[a][b] = 0 \Rightarrow [b] = [b]([a][x]) = ([b][a])[x] = ([a][b])[x] =$ 0[x] = 0.. $(3 \Rightarrow 1)$: Suppose that (3) holds and that d|p. Then p = dk for some $k \in \mathbb{Z}$. Thus, [d][k] = [p] = [0]. So, by (3), $[d] = 0 \Rightarrow p | d \Rightarrow d = \pm p$ or $[k] = 0 \Rightarrow p | k \Rightarrow k = \pm p \Rightarrow d = \pm 1.$ Thus p is prime.

Let p > 1 be prime. For any $[0] \neq [a] \in \mathbb{Z}_p$ and $[b] \in \mathbb{Z}_p$, the equation [a]x = [b] has a unique solution in \mathbb{Z}_p .

Let p > 1 be prime. For any $[0] \neq [a] \in \mathbb{Z}_p$ and $[b] \in \mathbb{Z}_p$, the equation [a]x = [b] has a unique solution in \mathbb{Z}_p .

Proof.

(Existence): From our theorem, we know that there is a solution to [a]x = [1], say x = [u].

Let p > 1 be prime. For any $[0] \neq [a] \in \mathbb{Z}_p$ and $[b] \in \mathbb{Z}_p$, the equation [a]x = [b] has a unique solution in \mathbb{Z}_p .

Proof.

(Existence): From our theorem, we know that there is a solution to [a]x = [1], say x = [u]. That is, [a][u] = 1.

Let p > 1 be prime. For any $[0] \neq [a] \in \mathbb{Z}_p$ and $[b] \in \mathbb{Z}_p$, the equation [a]x = [b] has a unique solution in \mathbb{Z}_p .

Proof.

(Existence): From our theorem, we know that there is a solution to [a]x = [1], say x = [u]. That is, [a][u] = 1. Thus [a][ub] = [b].

Let p > 1 be prime. For any $[0] \neq [a] \in \mathbb{Z}_p$ and $[b] \in \mathbb{Z}_p$, the equation [a]x = [b] has a unique solution in \mathbb{Z}_p .

Proof.

(Existence): From our theorem, we know that there is a solution to [a]x = [1], say x = [u]. That is, [a][u] = 1. Thus [a][ub] = [b]. So, x = [ub] is a solution to [a]x = [b] in \mathbb{Z}_p .

イロン イ部ン イヨン イヨン 三日

Let p > 1 be prime. For any $[0] \neq [a] \in \mathbb{Z}_p$ and $[b] \in \mathbb{Z}_p$, the equation [a]x = [b] has a unique solution in \mathbb{Z}_p .

Proof.

(Existence): From our theorem, we know that there is a solution to [a]x = [1], say x = [u]. That is, [a][u] = 1. Thus [a][ub] = [b]. So, x = [ub] is a solution to [a]x = [b] in \mathbb{Z}_p . (Uniqueness): Suppose that [u] and [w] are both solutions.

Let p > 1 be prime. For any $[0] \neq [a] \in \mathbb{Z}_p$ and $[b] \in \mathbb{Z}_p$, the equation [a]x = [b] has a unique solution in \mathbb{Z}_p .

Proof.

(Existence): From our theorem, we know that there is a solution to [a]x = [1], say x = [u]. That is, [a][u] = 1. Thus [a][ub] = [b]. So, x = [ub] is a solution to [a]x = [b] in \mathbb{Z}_p . (Uniqueness): Suppose that [u] and [w] are both solutions. Then [a][u] = [a][w] in \mathbb{Z}_p .

Let p > 1 be prime. For any $[0] \neq [a] \in \mathbb{Z}_p$ and $[b] \in \mathbb{Z}_p$, the equation [a]x = [b] has a unique solution in \mathbb{Z}_p .

Proof.

(Existence): From our theorem, we know that there is a solution to [a]x = [1], say x = [u]. That is, [a][u] = 1. Thus [a][ub] = [b]. So, x = [ub] is a solution to [a]x = [b] in \mathbb{Z}_p . (Uniqueness): Suppose that [u] and [w] are both solutions. Then [a][u] = [a][w] in \mathbb{Z}_p . Thus [a]([u] - [w]) = 0 in \mathbb{Z}_p .

Let p > 1 be prime. For any $[0] \neq [a] \in \mathbb{Z}_p$ and $[b] \in \mathbb{Z}_p$, the equation [a]x = [b] has a unique solution in \mathbb{Z}_p .

Proof.

(Existence): From our theorem, we know that there is a solution to [a]x = [1], say x = [u]. That is, [a][u] = 1. Thus [a][ub] = [b]. So, x = [ub] is a solution to [a]x = [b] in \mathbb{Z}_p . (Uniqueness): Suppose that [u] and [w] are both solutions. Then [a][u] = [a][w] in \mathbb{Z}_p . Thus [a]([u] - [w]) = 0 in \mathbb{Z}_p . Since $[a] \neq [0], [u] - [w] = 0 \Rightarrow [u] = [w]$ in \mathbb{Z}_p .

Suppose that $a, b, n \in \mathbb{Z}$ with n > 1 and (a, n) = 1. Then the equation [a]x = [b] has a solution in \mathbb{Z}_n .

Suppose that $a, b, n \in \mathbb{Z}$ with n > 1 and (a, n) = 1. Then the equation [a]x = [b] has a solution in \mathbb{Z}_n .

PROOF.

Since (a, n) = 1, there exists $z, y \in \mathbb{Z}$ such that $az + ny = 1 \Rightarrow$

Suppose that $a, b, n \in \mathbb{Z}$ with n > 1 and (a, n) = 1. Then the equation [a]x = [b] has a solution in \mathbb{Z}_n .

PROOF.

Since (a, n) = 1, there exists $z, y \in \mathbb{Z}$ such that $az + ny = 1 \Rightarrow az - 1 = n(-y)$.

Suppose that $a, b, n \in \mathbb{Z}$ with n > 1 and (a, n) = 1. Then the equation [a]x = [b] has a solution in \mathbb{Z}_n .

Proof.

Since
$$(a, n) = 1$$
, there exists $z, y \in \mathbb{Z}$ such that $az + ny = 1 \Rightarrow az - 1 = n(-y)$.
Thus, $[a][z] = 1 \Rightarrow$

Suppose that $a, b, n \in \mathbb{Z}$ with n > 1 and (a, n) = 1. Then the equation [a]x = [b] has a solution in \mathbb{Z}_n .

Proof.

Since
$$(a, n) = 1$$
, there exists $z, y \in \mathbb{Z}$ such that $az + ny = 1 \Rightarrow az - 1 = n(-y)$.
Thus, $[a][z] = 1 \Rightarrow [a][zb] = [b]$ in \mathbb{Z}_n .

Suppose that $a, b, n \in \mathbb{Z}$ with n > 1 and (a, n) = 1. Then the equation [a]x = [b] has a solution in \mathbb{Z}_n .

Proof.

Since
$$(a, n) = 1$$
, there exists $z, y \in \mathbb{Z}$ such that $az + ny = 1 \Rightarrow az - 1 = n(-y)$.
Thus, $[a][z] = 1 \Rightarrow [a][zb] = [b]$ in \mathbb{Z}_n .
So, $x = [zb]$ is a solution.

Theorem

Suppose that $a, b, n \in \mathbb{Z}$ with n > 1 and (a, n) = d.

- **1** The equation [a]x = [b] has a solution in \mathbb{Z}_n if and only if d|b.
- In the case that d|b the equation [a]x = [b] has d distinct solutions in Z_n.

Theorem

Suppose that $a, b, n \in \mathbb{Z}$ with n > 1 and (a, n) = d.

- **1** The equation [a]x = [b] has a solution in \mathbb{Z}_n if and only if d|b.
- In the case that d|b the equation [a]x = [b] has d distinct solutions in Z_n.

Proof.

Exercise.