MTHSC 412 Section 3.1 – Definition and Examples of Rings

Kevin James

Kevin James MTHSC 412 Section 3.1 – Definition and Examples of Rings

Definition

A ring R is a nonempty set R together with two binary operations (usually written as addition and multiplication) that satisfy the following axioms. Suppose that $a, b, c \in R$.

1
$$a + b \in R$$
. (*R* is closed under addition.)

- 2 a + (b + c) = (a + b) + c. (Associativity of addition)
- **3** a + b = b + a. (Commutativity of addition)
- (a) There is an element $0_R \in R$ such that a + 0 = 0 + a = a. (Additive Identity or Zero element).
- **6** For each $a \in R$, the equation $a + x = 0_R$ has a solution in R, usually denoted -a. (Additive Inverses)
- **6** $ab \in R$. (*R* is closed under multiplication)
- **8** a(b+c) = ab + ac and (a+b)c = ac + bc. (Distributive laws)

(日) (四) (王) (王) (王)

A commutative ring R is a ring which also satisfies

9 ab = ba, for all $a, b \in R$. (Commutativity of multiplication)

・日・ ・ ヨ・ ・ ヨ・

3

A commutative ring R is a ring which also satisfies

9 ab = ba, for all $a, b \in R$. (Commutativity of multiplication)

DEFINITION

A ring with identity is a ring R that contains an element 1_R satisfying the following.

(1) $1_R a = a 1_R = a$, for all $a \in R$. (Multiplicative Identity)

(本間) (本語) (本語)

 ℤ with the usual definition of addition and multiplication is a commutative ring with identity.

▲ □ ► < □ ►</p>

_∢ ≣ ≯

- 1 \mathbb{Z} with the usual definition of addition and multiplication is a commutative ring with identity.
- Z_n with addition and multiplication as defined in chapter 2 is a commutative ring with identity.

A (1) > A (1) > A

- 1 \mathbb{Z} with the usual definition of addition and multiplication is a commutative ring with identity.
- Z_n with addition and multiplication as defined in chapter 2 is a commutative ring with identity.
- **3** The set *E* of even integers is a commutative ring (without identity).

- A 🗇 N - A 🖻 N - A 🖻 N

- 1 \mathbb{Z} with the usual definition of addition and multiplication is a commutative ring with identity.
- Z_n with addition and multiplication as defined in chapter 2 is a commutative ring with identity.
- **3** The set *E* of even integers is a commutative ring (without identity).
- **4** The set O of odd integers is not a ring.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Example

- 1 \mathbb{Z} with the usual definition of addition and multiplication is a commutative ring with identity.
- Z_n with addition and multiplication as defined in chapter 2 is a commutative ring with identity.
- **3** The set *E* of even integers is a commutative ring (without identity).
- **4** The set O of odd integers is not a ring.
- **6** The set $T = \{r, s, t, z\}$ is a ring under the addition and multiplication defined below.

+	Z	r	5	t		•	Ζ	r	s	t
Z	Z	r	5	t		Ζ	Ζ	Ζ	Ζ	Ζ
r	r	Ζ	t	5	and	r	z	Ζ	r	r
s	s	t	Ζ	r		5	z	Ζ	5	s
t	t	5	r	Ζ		t	Z	Ζ	t	t

イロト イポト イヨト イヨト

6 The set $\mathbb{M}_2(\mathbb{R})$ of 2×2 matrices with real entries is a (noncommutative) ring with identity.

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

- 6 The set M₂(ℝ) of 2 × 2 matrices with real entries is a (noncommutative) ring with identity.
- i Similarly, the sets M₂(ℤ), M₂(ℤ_n), M₂(ℚ), M₂(ℂ) are (noncommutative) rings with identity.

(《圖》 《문》 《문》 - 문

- 6 The set M₂(ℝ) of 2 × 2 matrices with real entries is a (noncommutative) ring with identity.
- ∂ Similarly, the sets M₂(Z), M₂(Z_n), M₂(Q), M₂(C) are (noncommutative) rings with identity.

8 $C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}\$ is a ring under the operations fg(x) = f(x)g(x) and (f + g)(x) = f(x) + g(x).

· < @ > < 문 > < 문 > · · 문

An integral domain is a commutative ring R with identity $1_R \neq 0_R$ that satisfies the following.

(1) Whenever $a, b \in R$ and ab = 0, either a = 0 or b = 0.

An integral domain is a commutative ring R with identity $1_R \neq 0_R$ that satisfies the following.

(1) Whenever $a, b \in R$ and ab = 0, either a = 0 or b = 0.

EXAMPLE

1 \mathbb{Z} is an integral domain.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

An integral domain is a commutative ring R with identity $1_R \neq 0_R$ that satisfies the following.

(1) Whenever $a, b \in R$ and ab = 0, either a = 0 or b = 0.

EXAMPLE

1 \mathbb{Z} is an integral domain.

2 If p is prime, then \mathbb{Z}_p is an integral domain.

→ 同 → → 目 → → 目 →

An integral domain is a commutative ring R with identity $1_R \neq 0_R$ that satisfies the following.

(1) Whenever $a, b \in R$ and ab = 0, either a = 0 or b = 0.

EXAMPLE

- **1** \mathbb{Z} is an integral domain.
- 2 If p is prime, then \mathbb{Z}_p is an integral domain.
- **3** \mathbb{Q} is an integral domain.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

An integral domain is a commutative ring R with identity $1_R \neq 0_R$ that satisfies the following.

(1) Whenever $a, b \in R$ and ab = 0, either a = 0 or b = 0.

EXAMPLE

- **1** \mathbb{Z} is an integral domain.
- 2 If p is prime, then \mathbb{Z}_p is an integral domain.
- **3** \mathbb{Q} is an integral domain.
- **4** \mathbb{Z}_6 is **NOT** and integral domain.

・ 同 ト ・ ヨ ト ・ ヨ ト

A <u>field</u> is a commutative ring R with identity $1_R \neq 0_R$. that satisfies the following condition.

P For each $0_R \neq a \in R$, the equation $ax = 1_R$ has a solution in R.

・ロト ・回ト ・ヨト ・ヨト

A <u>field</u> is a commutative ring R with identity $1_R \neq 0_R$. that satisfies the following condition.

P For each $0_R \neq a \in R$, the equation $ax = 1_R$ has a solution in R.

EXAMPLE ① Q is a field.

(日) (同) (E) (E) (E)

A <u>field</u> is a commutative ring R with identity $1_R \neq 0_R$. that satisfies the following condition.

(*P* For each $0_R ≠ a ∈ R$, the equation $ax = 1_R$ has a solution in *R*.

Example		
1 \mathbb{Q} is a field.		
${f 2}\ {\Bbb R}$ is a field		

< □ > < @ > < 注 > < 注 > ... 注

A <u>field</u> is a commutative ring R with identity $1_R \neq 0_R$. that satisfies the following condition.

P For each $0_R \neq a \in R$, the equation $ax = 1_R$ has a solution in R.

Example		
1 \mathbb{Q} is a field.		
${f 2}\ {\Bbb R}$ is a field		
${f 8}$ ${\Bbb C}$ is a field.		

< □ > < @ > < 注 > < 注 > ... 注

A <u>field</u> is a commutative ring R with identity $1_R \neq 0_R$. that satisfies the following condition.

P For each $0_R \neq a \in R$, the equation $ax = 1_R$ has a solution in R.

Example	
$oldsymbol{0}$ \mathbb{Q} is a field.	
${f 2}$ ${\Bbb R}$ is a field	
${f 3}$ ${\Bbb C}$ is a field.	
4 If p is prime then \mathbb{Z}_p is a field.	

・ロト ・回ト ・ヨト ・ヨト

3

Theorem

Let R and S be rings. Define addition and multiplication on $R \times S$ by

$$(a, b) + (c, d) = (a + c, b + d),$$
 and $(a, b)(c, d) = (ac, bd).$

Then $R \times S$ is a ring. If both R and S are commutative then so is $R \times S$. If both R and S have an identity then so does $R \times S$, namely $1_{R \times S} = (1_R, 1_S)$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

Let R and S be rings. Define addition and multiplication on $R \times S$ by

$$(a, b) + (c, d) = (a + c, b + d),$$
 and $(a, b)(c, d) = (ac, bd).$

Then $R \times S$ is a ring. If both R and S are commutative then so is $R \times S$. If both R and S have an identity then so does $R \times S$, namely $1_{R \times S} = (1_R, 1_S)$.

Proof.

Exercise.

▲祠 ▶ ▲ 臣 ▶ ★ 臣 ▶

If R is a ring and $S \subset R$ is also a ring under the same operations as R, the we say that S is a subring of R.

同 と く き と く き と

If R is a ring and $S \subset R$ is also a ring under the same operations as R, the we say that S is a subring of R.

EXAMPLE

1 \mathbb{Z} is a subring of \mathbb{Q} .

| 4 回 2 4 U = 2 4 U =

If R is a ring and $S \subset R$ is also a ring under the same operations as R, the we say that S is a subring of R.

EXAMPLE

- **1** \mathbb{Z} is a subring of \mathbb{Q} .
- **2** \mathbb{Q} is a subring of \mathbb{R} .

If R is a ring and $S \subset R$ is also a ring under the same operations as R, the we say that S is a subring of R.

EXAMPLE

- **1** \mathbb{Z} is a subring of \mathbb{Q} .
- Q is a subring of ℝ. In fact, we can say that Q is a <u>subfield</u> of ℝ.

(4回) (4回) (4回)

Theorem

Suppose that R is a ring and that $S \subseteq R$ satisfies

- **1** *S* is closed under addition.
- **2** *S* is closed under multiplication.
- **3** $0_R \in S$.
- 4 If $a \in S$ then the solution to $a + x = 0_R$ is in S.

Then S is a subring of R.

- 4 回 2 - 4 □ 2 - 4 □

Theorem

Suppose that R is a ring and that $S \subseteq R$ satisfies

- **1** *S* is closed under addition.
- **2** *S* is closed under multiplication.
- **3** $0_R \in S$.
- 4 If $a \in S$ then the solution to $a + x = 0_R$ is in S.

Then S is a subring of R.

Proof.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

3

 $\{0,3\}$ is a subring of $\mathbb{Z}_6.$

Kevin James MTHSC 412 Section 3.1 – Definition and Examples of Rings

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ