MTHSC 412 SECTION 3.1 – DEFINITION AND EXAMPLES OF RINGS

Kevin James

A ring R is a nonempty set R together with two binary operations (usually written as addition and multiplication) that satisfy the following axioms. Suppose that $a, b, c \in R$.

- 1 $a + b \in R$. (R is closed under addition.)
- 2 a + (b + c) = (a + b) + c. (Associativity of addition)
- 3 a + b = b + a. (Commutativity of addition)
- ① There is an element $0_R \in R$ such that a + 0 = 0 + a = a. (Additive Identity or Zero element).
- **6** For each $a \in R$, the equation $a + x = 0_R$ has a solution in R, usually denoted -a. (Additive Inverses)
- **6** $ab \in R$. (R is closed under multiplication)
- a(bc) = (ab)c. (Associativity of multiplication)
- 8 a(b+c) = ab + ac and (a+b)c = ac + bc. (Distributive laws)

A commutative ring R is a ring which also satisfies

 $oldsymbol{9}\ ab=ba,\ ext{for all}\ a,b\in R.\ ext{(Commutativity of multiplication)}$

DEFINITION

A <u>ring with identity</u> is a ring R that contains an element 1_R satisfying the following.

 $\mathbf{0} \ \mathbf{1}_R a = a \mathbf{1}_R = a$, for all $a \in R$. (Multiplicative Identity)

EXAMPLE

- $lue{1}$ \mathbb{Z} with the usual definition of addition and multiplication is a commutative ring with identity.
- 2 \mathbb{Z}_n with addition and multiplication as defined in chapter 2 is a commutative ring with identity.
- The set E of even integers is a commutative ring (without identity).
- The set O of odd integers is not a ring.
- **6** The set $T = \{r, s, t, z\}$ is a ring under the addition and multiplication defined below.

+	Z	r	S	t
Z	Z	r	S	t
r	r	Z	t	S
s	S	t	Z	r
t	t	S	r	Z

and

•	Z	r	S	t
Z	Z	Z	Z	Z
r	z	Z	r	r
5	Z	Z	5	5
t	Z	Z	t	t

- **6** The set $\mathbb{M}_2(\mathbb{R})$ of 2×2 matrices with real entries is a (noncommutative) ring with identity.
- **⊘** Similarly, the sets $\mathbb{M}_2(\mathbb{Z})$, $\mathbb{M}_2(\mathbb{Z}_n)$, $\mathbb{M}_2(\mathbb{Q})$, $\mathbb{M}_2(\mathbb{C})$ are (noncommutative) rings with identity.
- **3** $C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous} \}$ is a ring under the operations fg(x) = f(x)g(x) and (f+g)(x) = f(x) + g(x).

An <u>integral domain</u> is a commutative ring R with identity $1_R \neq 0_R$ that satisfies the following.

① Whenever $a, b \in R$ and ab = 0, either a = 0 or b = 0.

- $\mathbf{0}$ \mathbb{Z} is an integral domain.
- ② If p is prime, then \mathbb{Z}_p is an integral domain.
- **4** \mathbb{Z}_6 is **NOT** and integral domain.

A <u>field</u> is a commutative ring R with identity $1_R \neq 0_R$. that satisfies the following condition.

Period For each $0_R \neq a \in R$, the equation $ax = 1_R$ has a solution in R.

- \bigcirc Q is a field.
- \odot C is a field.
- **4** If p is prime then \mathbb{Z}_p is a field.

THEOREM

Let R and S be rings. Define addition and multiplication on $R \times S$ by

$$(a,b)+(c,d)=(a+c,b+d),$$
 and $(a,b)(c,d)=(ac,bd).$

Then $R \times S$ is a ring. If both R and S are commutative then so is $R \times S$. If both R and S have an identity then so does $R \times S$, namely $1_{R \times S} = (1_R, 1_S)$.

Proof.

Exercise.

If R is a ring and $S \subset R$ is also a ring under the same operations as R, the we say that S is a subring of R.

- \bigcirc \mathbb{Z} is a subring of \mathbb{Q} .
- 2 $\mathbb Q$ is a subring of $\mathbb R$. In fact, we can say that $\mathbb Q$ is a <u>subfield</u> of $\mathbb R$.

THEOREM

Suppose that R is a ring and that $S \subseteq R$ satisfies

- 1 S is closed under addition.
- 2 S is closed under multiplication.
- **3** 0_R ∈ S.
- **4** If $a \in S$ then the solution to $a + x = 0_R$ is in S.

Then S is a subring of R.

Proof.

EXAMPLE

 $\{0,3\}$ is a subring of $\mathbb{Z}_6.$