
MTHSC 412 Section 3.2 – Basic
Properties of Rings

Kevin James

Kevin James MTHSC 412 Section 3.2 – Basic Properties of Rings



Theorem

For R a ring and a ∈ R, the equation a + x = 0R has a unique
solution.

Proof.

Suppose that w and z are two solutions.
Then w = w + 0 = w + (a + z) = (a + w) + z = 0 + z = z .

Definition

1 Given R, a ring and a ∈ R. We define −a to be the unique
solution in R to the equation a + x = 0.

2 In a ring R we define subtraction as a− b = a + (−b).
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Example

Suppose that R = Z6.

1 Since 2 + 4 = 0, −2 = 4.

2 So, 5− 2 = 5 + 4 = 3 in Z6.
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Note

If R is a ring then we know that addition and multiplication are
well-defined. It follows that
x = y ⇒ x + a = y + a and
x = y ⇒ xa = ya.

Theorem

Suppose that R is a ring and a, b ∈ R. Then
a + x = a + y ⇒ x = y.

Proof.

x = 0 + x = (−a + a) + x = − a + (a + x) = − a + (a + y) =
(−a + a) + y = y .
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Theorem

Suppose that R is a ring and a, b ∈ R. Then,

1 a · 0R = 0R · a = 0R .

2 a(−b) = −ab = (−a)b.

3 −(−a) = a.

4 −(a + b) = (−a) + (−b).

5 −(a− b) = −a + b = b − a.

6 (−a)(−b) = ab.

7 If R is a ring with identity then we also have (−1R)a = −a.
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Detecting Subrings

Theorem

Let R be a ring and let ∅ 6= S ⊆ R such that

1 S is closed under subtraction.

2 S is closed under multiplication.

Then S is a subring of R.
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Definition

Let R be a ring.

1 For any a ∈ R we define nonnegative integral multiples by

0a = 0R , 1a = a, (n + 1)a = na + a (n > 0).

Negative integral multiples are defined by

(−n)a = n(−a) n > 0.

2 For any a ∈ R we define nonnegative integral exponents as
follows. If R has an identity then a0 = 1R . In any case,

a1 = a, an+1 = ana n > 0.

If a has a multiplicative inverse, negative integral exponents
are defined by

a−n = (a−1)n n > 0.
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Theorem (Laws of Multiples)

Suppose that R is a ring and that a, b ∈ R, and m, n ∈ Z. Then,

1 na + (−n)a = 0,

2 ma + na = (m + n)a,

3 n(ma) = (nm)a, and

4 n(a + b) = na + nb.

Theorem (Laws of Exponents)

Suppose that R is a ring a, b ∈ R, and m, n ∈ Z. Then,

1 If a is invertible, then an · a−n = e,

2 am · an = am+n,

3 (am)n = amn, and

4 If R is commutative then (ab)n = anbn.
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Theorem

Let R be a ring and let a, b ∈ R. The equation a + x = b has the
unique solution x = b − a.

Proof.

(Existence): We note that
a + (b − a) = a + ((−a) + b) = (a + (−a)) + b = 0 + b = b.
Thus x = b − a is a solution.
(Uniqueness): Suppose that w is another solution.
Then we have a + x = a + w ⇒ x = w .
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Note

Suppose that R is a ring with identity and that a ∈ R. If ax = 1
and ya = 1 both have solutions, say u and v respectively, then we
have

u = 1 · u = (va)u = v(au) = v · 1 = v .

Definition

Suppose that R is a ring with identity and that a ∈ R. If there
exists u ∈ R such that au = 1R = ua then we say that a is a unit
and that u is the multiplicative inverse of a and we write u = a−1.
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Example

1 In Z10, 7 is a unit and in fact 7−1 = 3.

2 In Z10, 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that a, b ∈ R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

Proof.

(Existence): Since a is a unit, there is an element c ∈ R such that
ac = ca = 1.
Thus, a(cb) = (ac)b = 1 · b = b. and (bc)a = b(ca) = b · 1 = b.
Thus x = cb and y = bc are solutions.
(Uniqueness): Suppose that u and v are both solutions to ax = b.
Then au = av ⇒ c(au) = c(av)⇒ (ca)u = (ca)v ⇒ u = v .
The proof in the other case is similar.
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Fields are Integral Domains

Theorem

Every field F is an integral domain.

Proof.

Suppose that F is a field and that a, b ∈ F with ab = 0 and a 6= 0.
Since, 0 6= a ∈ F , a is a unit.
So, b = 1 · b = (a−1a)b = a−1(ab) = a−1 · 0 = 0.
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Cancellation Law

Theorem

Suppose that R is an integral domain and that 0 6= a ∈ R. Then
ax = ay ⇒ x = y.

Proof.

Suppose that 0 6= a ∈ R and that R is an integral domain.
Then we have ax = ay ⇒ ax − ay = 0⇒ a(x − y) = 0.
Since a 6= 0 and R is an integral domain, we conclude that
x = y .
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Lemma

If R is an integral domain and 0 6= a ∈ R and 0 < k ∈ Z then
ak 6= 0.

Proof.

Suppose that 0 6= a ∈ R.
Let S = {k ∈ Z | k > 0; ak = 0}.
Assume for the sake of contradiction that S 6= ∅.
If this is true then by the well ordering principle, there is a smallest
element, say j ∈ S .
Note that 0 6= a = a1. Thus j ≥ 2.
Now we have 0 = aj = a · aj−1.
Since 1 ≤ j − 1 < j , we have that aj−1 6= 0 and we were given that
a 6= 0.
Thus we have reached a contradiction to our hypothesis that R
was an integral domain.
Thus S = ∅ and the lemma holds.
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Theorem

Every finite integral domain is a field.

Proof.

Suppose that R is a finite integral domain and 0 6= a ∈ R.
Consider the infinite sequence {ak}k≥1

Since R is finite the above sequence must repeat.
Thus there exists i , j ∈ Z with i > j such that ai = aj .
Since (i − j) > 0, we have 0 = ai − aj = aj(ai−j − 1).
Since R is an integral domain and aj 6= 0 by our lemma, we can
conclude that ai−j = 1
Thus, we have a · ai−j−1 = 1. (Note: i > j ⇒ i − j − 1 ≥ 0.
Thus, ai−j−1 = a−1.
So, we have shown that if a 6= 0, then a is a unit. Thus R is a
field.
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Definition

Suppose that R is a ring. A zero divisor in R is an element a
satisfying:

1 a 6= 0.

2 There is an element 0 6= b ∈ R such that either ab = 0 or
ba = 0.
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