MTHSC 412 Section 3.2 – Basic Properties of Rings

Kevin James

Kevin James MTHSC 412 Section 3.2 – Basic Properties of Rings

- 4 回 2 - 4 □ 2 - 4 □

For R a ring and $a \in R$, the equation $a + x = 0_R$ has a unique solution.

・ 回 ト ・ ヨ ト ・ ヨ ト

For R a ring and $a \in R$, the equation $a + x = 0_R$ has a unique solution.

Proof.

Suppose that w and z are two solutions.

For R a ring and $a \in R$, the equation $a + x = 0_R$ has a unique solution.

Proof.

Suppose that w and z are two solutions.

Then w = w + 0 =

・ 回 と ・ ヨ と ・ ヨ と

For R a ring and $a \in R$, the equation $a + x = 0_R$ has a unique solution.

Proof.

Suppose that w and z are two solutions.

Then
$$w = w + 0 = w + (a + z) =$$

・日本 ・ モン・ ・ モン

For R a ring and $a \in R$, the equation $a + x = 0_R$ has a unique solution.

Proof.

Suppose that w and z are two solutions.

Then
$$w = w + 0 = w + (a + z) = (a + w) + z = 0$$

・日本 ・ モン・ ・ モン

For R a ring and $a \in R$, the equation $a + x = 0_R$ has a unique solution.

Proof.

Suppose that w and z are two solutions.

Then
$$w = w + 0 = w + (a + z) = (a + w) + z = 0 + z = z$$

(1日) (日) (日)

For R a ring and $a \in R$, the equation $a + x = 0_R$ has a unique solution.

Proof.

Suppose that w and z are two solutions.

Then
$$w = w + 0 = w + (a + z) = (a + w) + z = 0 + z = z$$

DEFINITION

- **1** Given R, a ring and $a \in R$. We define -a to be the unique solution in R to the equation a + x = 0.
- **2** In a ring R we define subtraction as a b = a + (-b).

イロン イヨン イヨン イヨン

EXAMPLE

Suppose that $R = \mathbb{Z}_6$.

- **1** Since 2 + 4 = 0, -2 = 4.
- **2** So, 5-2=5+4=3 in \mathbb{Z}_6 .

(ロ) (同) (E) (E) (E)

If R is a ring then we know that addition and multiplication are well-defined. It follows that

$$x = y \Rightarrow x + a = y + a$$
 and

 $x = y \Rightarrow xa = ya.$

・ 回 と ・ ヨ と ・ ヨ と

If ${\it R}$ is a ring then we know that addition and multiplication are well-defined. It follows that

$$x = y \Rightarrow x + a = y + a$$
 and

 $x = y \Rightarrow xa = ya.$

Theorem

Suppose that R is a ring and $a, b \in R$. Then

 $a + x = a + y \Rightarrow x = y$.

イロン イヨン イヨン イヨン

If R is a ring then we know that addition and multiplication are well-defined. It follows that

$$x = y \Rightarrow x + a = y + a$$
 and

 $x = y \Rightarrow xa = ya.$

Theorem

Suppose that R is a ring and $a, b \in R$. Then $a + x = a + y \Rightarrow x = y$.

Proof.

x = 0 + x =

イロト イヨト イヨト イヨト

If R is a ring then we know that addition and multiplication are well-defined. It follows that

$$x = y \Rightarrow x + a = y + a$$
 and

 $x = y \Rightarrow xa = ya.$

Theorem

Suppose that R is a ring and $a, b \in R$. Then $a + x = a + y \Rightarrow x = y$.

Proof.

$$x = 0 + x = (-a + a) + x = 0$$

(ロ) (同) (E) (E) (E)

If R is a ring then we know that addition and multiplication are well-defined. It follows that

$$x = y \Rightarrow x + a = y + a$$
 and

 $x = y \Rightarrow xa = ya.$

Theorem

Suppose that R is a ring and $a, b \in R$. Then $a + x = a + y \Rightarrow x = y$.

Proof.

$$x = 0 + x = (-a + a) + x = -a + (a + x) =$$

イロン イボン イヨン イヨン 三日

If R is a ring then we know that addition and multiplication are well-defined. It follows that

$$x = y \Rightarrow x + a = y + a$$
 and

 $x = y \Rightarrow xa = ya.$

Theorem

Suppose that R is a ring and $a, b \in R$. Then $a + x = a + y \Rightarrow x = y$.

Proof.

$$x = 0 + x = (-a + a) + x = -a + (a + x) = -a + (a + y) = -a + (a$$

イロン イボン イヨン イヨン 三日

If R is a ring then we know that addition and multiplication are well-defined. It follows that

$$x = y \Rightarrow x + a = y + a$$
 and

 $x = y \Rightarrow xa = ya.$

Theorem

Suppose that R is a ring and $a, b \in R$. Then $a + x = a + y \Rightarrow x = y$.

Proof.

$$x = 0 + x = (-a + a) + x = -a + (a + x) = -a + (a + y) = (-a + a) + y =$$

If R is a ring then we know that addition and multiplication are well-defined. It follows that

$$x = y \Rightarrow x + a = y + a$$
 and

 $x = y \Rightarrow xa = ya.$

Theorem

Suppose that R is a ring and $a, b \in R$. Then $a + x = a + y \Rightarrow x = y$.

Proof.

$$x = 0 + x = (-a + a) + x = -a + (a + x) = -a + (a + y) = (-a + a) + y = y.$$

イロン イボン イヨン イヨン 三日

THEOREM

Suppose that R is a ring and $a, b \in R$. Then,

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

DETECTING SUBRINGS

向下 イヨト イヨト

Theorem

Let *R* be a ring and let $\emptyset \neq S \subseteq R$ such that

- **1** *S* is closed under subtraction.
- **2** *S* is closed under multiplication.

Then S is a subring of R.

DEFINITION

Let R be a ring.

1 For any $a \in R$ we define *nonnegative integral multiples* by

$$0a = 0_R,$$
 $1a = a,$ $(n+1)a = na + a$ $(n > 0).$

Negative integral multiples are defined by

$$(-n)a = n(-a)$$
 $n > 0.$

ヘロン 人間と 人間と 人間と

ъ

Definition

Let R be a ring.

1 For any $a \in R$ we define *nonnegative integral multiples* by

 $0a = 0_R$, 1a = a, (n+1)a = na + a (n > 0).

Negative integral multiples are defined by

$$(-n)a = n(-a)$$
 $n > 0.$

Por any a ∈ R we define nonnegative integral exponents as follows. If R has an identity then a⁰ = 1_R. In any case,

$$a^1 = a,$$
 $a^{n+1} = a^n a$ $n > 0.$

If a has a multiplicative inverse, negative integral exponents are defined by

$$a^{-n} = (a^{-1})^n \qquad n > 0.$$

イロン 不得 とうき とうせい

э

THEOREM (LAWS OF MULTIPLES)

Suppose that R is a ring and that $a, b \in R$, and $m, n \in \mathbb{Z}$. Then,

(人間) (人) (人) (人)

THEOREM (LAWS OF MULTIPLES)

Suppose that R is a ring and that $a, b \in R$, and $m, n \in \mathbb{Z}$. Then,

THEOREM (LAWS OF EXPONENTS)

Suppose that R is a ring $a, b \in R$, and $m, n \in \mathbb{Z}$. Then,

1 If a is invertible, then
$$a^n \cdot a^{-n} = e$$
,

$$2 a^m \cdot a^n = a^{m+n}$$

$${f 3}$$
 $(a^m)^n=a^{mn}$, and

4 If R is commutative then $(ab)^n = a^n b^n$.

イロト イポト イヨト イヨト

Let R be a ring and let $a, b \in R$. The equation a + x = b has the unique solution x = b - a.

イロン イボン イヨン イヨン 三日

Let R be a ring and let $a, b \in R$. The equation a + x = b has the unique solution x = b - a.

Proof.

(Existence): We note that a + (b - a) = a + ((-a) + b) = (a + (-a)) + b = 0 + b = b.

イロン イボン イヨン イヨン 三日

THEOREM

Let R be a ring and let $a, b \in R$. The equation a + x = b has the unique solution x = b - a.

Proof.

(Existence): We note that a + (b - a) = a + ((-a) + b) = (a + (-a)) + b = 0 + b = b. Thus x = b - a is a solution.

イロン イ部ン イヨン イヨン 三日

Let R be a ring and let $a, b \in R$. The equation a + x = b has the unique solution x = b - a.

Proof.

(Existence): We note that a + (b - a) = a + ((-a) + b) = (a + (-a)) + b = 0 + b = b. Thus x = b - a is a solution. (Uniqueness): Suppose that w is another solution.

イロト イポト イヨト イヨト

Let R be a ring and let $a, b \in R$. The equation a + x = b has the unique solution x = b - a.

Proof.

(Existence): We note that a + (b - a) = a + ((-a) + b) = (a + (-a)) + b = 0 + b = b.Thus x = b - a is a solution. (Uniqueness): Suppose that w is another solution. Then we have $a + x = a + w \Rightarrow x = w.$

イロト イヨト イヨト イヨト

Suppose that R is a ring with identity and that $a \in R$. If ax = 1 and ya = 1 both have solutions, say u and v respectively, then we have

イロト イヨト イヨト イヨト

Suppose that *R* is a ring with identity and that $a \in R$. If ax = 1 and ya = 1 both have solutions, say *u* and *v* respectively, then we have $u = 1 \cdot u =$

イロン イボン イヨン イヨン 三日

Suppose that R is a ring with identity and that $a \in R$. If ax = 1 and ya = 1 both have solutions, say u and v respectively, then we have

 $u = 1 \cdot u = (va)u =$

イロト イヨト イヨト イヨト

Suppose that R is a ring with identity and that $a \in R$. If ax = 1 and ya = 1 both have solutions, say u and v respectively, then we have

 $u = 1 \cdot u = (va)u = v(au) = v \cdot 1$

イロン イヨン イヨン イヨン

Suppose that R is a ring with identity and that $a \in R$. If ax = 1 and ya = 1 both have solutions, say u and v respectively, then we have

 $u = 1 \cdot u = (va)u = v(au) = v \cdot 1 = v.$

イロン イ部ン イヨン イヨン 三日

Suppose that R is a ring with identity and that $a \in R$. If ax = 1 and ya = 1 both have solutions, say u and v respectively, then we have

$$u = 1 \cdot u = (va)u = v(au) = v \cdot 1 = v.$$

DEFINITION

Suppose that *R* is a ring with identity and that $a \in R$. If there exists $u \in R$ such that $au = 1_R = ua$ then we say that *a* is a <u>unit</u> and that *u* is the multiplicative inverse of *a* and we write $u = a^{-1}$.

- 4 同 6 4 日 6 4 日 6

EXAMPLE

1 In \mathbb{Z}_{10} , 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

EXAMPLE

1 In \mathbb{Z}_{10} , 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

・ロト ・回ト ・ヨト ・ヨト
EXAMPLE

1 In \mathbb{Z}_{10} , 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

Proof.

(Existence): Since *a* is a unit, there is an element $c \in R$ such that ac = ca = 1.

EXAMPLE

1 In
$$\mathbb{Z}_{10}$$
, 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

Proof.

(Existence): Since a is a unit, there is an element $c \in R$ such that ac = ca = 1. Thus, $a(cb) = (ac)b = 1 \cdot b = b$. and $(bc)a = b(ca) = b \cdot 1 = b$.

EXAMPLE

1 In
$$\mathbb{Z}_{10}$$
, 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

Proof.

(Existence): Since *a* is a unit, there is an element $c \in R$ such that ac = ca = 1. Thus, $a(cb) = (ac)b = 1 \cdot b = b$. and $(bc)a = b(ca) = b \cdot 1 = b$. Thus x = cb and y = bc are solutions.

1 In
$$\mathbb{Z}_{10}$$
, 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

Proof.

(Existence): Since a is a unit, there is an element $c \in R$ such that ac = ca = 1. Thus, $a(cb) = (ac)b = 1 \cdot b = b$. and $(bc)a = b(ca) = b \cdot 1 = b$. Thus x = cb and y = bc are solutions. (Uniqueness): Suppose that u and v are both solutions to ax = b.

1 In
$$\mathbb{Z}_{10}$$
, 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

Proof.

(Existence): Since a is a unit, there is an element $c \in R$ such that ac = ca = 1. Thus, $a(cb) = (ac)b = 1 \cdot b = b$. and $(bc)a = b(ca) = b \cdot 1 = b$. Thus x = cb and y = bc are solutions. (Uniqueness): Suppose that u and v are both solutions to ax = b. Then $au = av \Rightarrow$

1 In
$$\mathbb{Z}_{10}$$
, 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

Proof.

(Existence): Since a is a unit, there is an element $c \in R$ such that ac = ca = 1. Thus, $a(cb) = (ac)b = 1 \cdot b = b$. and $(bc)a = b(ca) = b \cdot 1 = b$. Thus x = cb and y = bc are solutions. (Uniqueness): Suppose that u and v are both solutions to ax = b. Then $au = av \Rightarrow c(au) = c(av) \Rightarrow$

1 In
$$\mathbb{Z}_{10}$$
, 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

Proof.

(Existence): Since a is a unit, there is an element $c \in R$ such that ac = ca = 1. Thus, $a(cb) = (ac)b = 1 \cdot b = b$. and $(bc)a = b(ca) = b \cdot 1 = b$. Thus x = cb and y = bc are solutions. (Uniqueness): Suppose that u and v are both solutions to ax = b. Then $au = av \Rightarrow c(au) = c(av) \Rightarrow (ca)u = (ca)v \Rightarrow$

1 In
$$\mathbb{Z}_{10}$$
, 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

Proof.

(Existence): Since a is a unit, there is an element $c \in R$ such that ac = ca = 1. Thus, $a(cb) = (ac)b = 1 \cdot b = b$. and $(bc)a = b(ca) = b \cdot 1 = b$. Thus x = cb and y = bc are solutions. (Uniqueness): Suppose that u and v are both solutions to ax = b. Then $au = av \Rightarrow c(au) = c(av) \Rightarrow (ca)u = (ca)v \Rightarrow u = v$.

1 In
$$\mathbb{Z}_{10}$$
, 7 is a unit and in fact $7^{-1} = 3$.

2 In \mathbb{Z}_{10} , 2 is not a unit.

Theorem

Suppose that R is a ring with identity and that $a, b \in R$ with a a unit. Then the equations ax = b and ya = b have a unique solution in R.

Proof.

(Existence): Since *a* is a unit, there is an element $c \in R$ such that ac = ca = 1. Thus, $a(cb) = (ac)b = 1 \cdot b = b$. and $(bc)a = b(ca) = b \cdot 1 = b$. Thus x = cb and y = bc are solutions. **(Uniqueness)**: Suppose that *u* and *v* are both solutions to ax = b. Then $au = av \Rightarrow c(au) = c(av) \Rightarrow (ca)u = (ca)v \Rightarrow u = v$. The proof in the other case is similar.

Theorem

Every field F is an integral domain.

→ 御 → → 注 → → 注 →

æ

THEOREM

Every field F is an integral domain.

Proof.

Suppose that F is a field and that $a, b \in F$ with ab = 0 and $a \neq 0$.

Theorem

Every field F is an integral domain.

Proof.

Suppose that F is a field and that $a, b \in F$ with ab = 0 and $a \neq 0$. Since, $0 \neq a \in F$, a is a unit.

イロン イヨン イヨン イヨン

Theorem

Every field F is an integral domain.

Proof.

Suppose that F is a field and that $a, b \in F$ with ab = 0 and $a \neq 0$. Since, $0 \neq a \in F$, a is a unit. So, $b = 1 \cdot b =$

イロン イヨン イヨン イヨン

Theorem

Every field F is an integral domain.

Proof.

Suppose that F is a field and that $a, b \in F$ with ab = 0 and $a \neq 0$. Since, $0 \neq a \in F$, a is a unit. So, $b = 1 \cdot b = (a^{-1}a)b =$

Theorem

Every field F is an integral domain.

Proof.

Suppose that F is a field and that $a, b \in F$ with ab = 0 and $a \neq 0$. Since, $0 \neq a \in F$, a is a unit. So, $b = 1 \cdot b = (a^{-1}a)b = a^{-1}(ab) =$

Theorem

Every field F is an integral domain.

Proof.

Suppose that F is a field and that $a, b \in F$ with ab = 0 and $a \neq 0$. Since, $0 \neq a \in F$, a is a unit. So, $b = 1 \cdot b = (a^{-1}a)b = a^{-1}(ab) = a^{-1} \cdot 0 = 0$.

THEOREM

Suppose that R is an integral domain and that $0 \neq a \in R$. Then $ax = ay \Rightarrow x = y$.

- - 4 回 ト - 4 回 ト

æ

THEOREM

Suppose that R is an integral domain and that $0 \neq a \in R$. Then $ax = ay \Rightarrow x = y$.

Proof.

Suppose that $0 \neq a \in R$ and that R is an integral domain.

Theorem

Suppose that R is an integral domain and that $0 \neq a \in R$. Then $ax = ay \Rightarrow x = y$.

Proof.

Suppose that $0 \neq a \in R$ and that R is an integral domain. Then we have $ax = ay \Rightarrow$

Theorem

Suppose that R is an integral domain and that $0 \neq a \in R$. Then $ax = ay \Rightarrow x = y$.

Proof.

Suppose that $0 \neq a \in R$ and that R is an integral domain. Then we have $ax = ay \Rightarrow ax - ay = 0 \Rightarrow$

THEOREM

Suppose that R is an integral domain and that $0 \neq a \in R$. Then $ax = ay \Rightarrow x = y$.

Proof.

Suppose that $0 \neq a \in R$ and that R is an integral domain. Then we have $ax = ay \Rightarrow ax - ay = 0 \Rightarrow a(x - y) = 0$.

イロト イポト イヨト イヨト

Theorem

Suppose that R is an integral domain and that $0 \neq a \in R$. Then $ax = ay \Rightarrow x = y$.

Proof.

Suppose that $0 \neq a \in R$ and that R is an integral domain. Then we have $ax = ay \Rightarrow ax - ay = 0 \Rightarrow a(x - y) = 0$. Since $a \neq 0$ and R is an integral domain, we conclude that x = y.

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

Proof.

Suppose that $0 \neq a \in R$.

Kevin James MTHSC 412 Section 3.2 – Basic Properties of Rings

ヘロン 人間と 人間と 人間と

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

Proof.

Suppose that $0 \neq a \in R$. Let $S = \{k \in \mathbb{Z} \mid k > 0; a^k = 0\}.$

・ロン ・回と ・ヨン ・ヨン

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

Proof.

Suppose that $0 \neq a \in R$. Let $S = \{k \in \mathbb{Z} \mid k > 0; a^k = 0\}$. Assume for the sake of contradiction that $S \neq \emptyset$.

・ロン ・回と ・ヨン ・ヨン

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

Proof.

Suppose that $0 \neq a \in R$. Let $S = \{k \in \mathbb{Z} \mid k > 0; a^k = 0\}$. Assume for the sake of contradiction that $S \neq \emptyset$. If this is true then by the well ordering principle, there is a smallest element, say $j \in S$.

イロト イヨト イヨト イヨト

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

Proof.

Suppose that $0 \neq a \in R$. Let $S = \{k \in \mathbb{Z} \mid k > 0; a^k = 0\}$. Assume for the sake of contradiction that $S \neq \emptyset$. If this is true then by the well ordering principle, there is a smallest element, say $j \in S$. Note that $0 \neq a = a^1$. Thus $j \ge 2$.

< ロ > < 同 > < 回 > < 正 > < 正

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

Proof.

Suppose that $0 \neq a \in R$. Let $S = \{k \in \mathbb{Z} \mid k > 0; a^k = 0\}$. Assume for the sake of contradiction that $S \neq \emptyset$. If this is true then by the well ordering principle, there is a smallest element, say $j \in S$. Note that $0 \neq a = a^1$. Thus $j \ge 2$. Now we have $0 = a^j = a \cdot a^{j-1}$.

< ロ > < 同 > < 回 > < 正 > < 正

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

Proof.

Suppose that $0 \neq a \in R$. Let $S = \{k \in \mathbb{Z} \mid k > 0; a^k = 0\}$. Assume for the sake of contradiction that $S \neq \emptyset$. If this is true then by the well ordering principle, there is a smallest element, say $j \in S$. Note that $0 \neq a = a^1$. Thus $j \ge 2$. Now we have $0 = a^j = a \cdot a^{j-1}$. Since $1 \le j - 1 < j$, we have that $a^{j-1} \ne 0$ and we were given that $a \ne 0$.

< ロ > < 同 > < 回 > < 正 > < 正

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

Proof.

Suppose that $0 \neq a \in R$. Let $S = \{k \in \mathbb{Z} \mid k > 0; a^k = 0\}$. Assume for the sake of contradiction that $S \neq \emptyset$. If this is true then by the well ordering principle, there is a smallest element, say $j \in S$. Note that $0 \neq a = a^1$. Thus $j \ge 2$. Now we have $0 = a^j = a \cdot a^{j-1}$. Since $1 \le j - 1 < j$, we have that $a^{j-1} \ne 0$ and we were given that $a \ne 0$.

Thus we have reached a contradiction to our hypothesis that R was an integral domain.

If R is an integral domain and $0 \neq a \in R$ and $0 < k \in \mathbb{Z}$ then $a^k \neq 0$.

Proof.

Suppose that $0 \neq a \in R$. Let $S = \{k \in \mathbb{Z} \mid k > 0; a^k = 0\}.$ Assume for the sake of contradiction that $S \neq \emptyset$. If this is true then by the well ordering principle, there is a smallest element, say $i \in S$. Note that $0 \neq a = a^1$. Thus i > 2. Now we have $0 = a^j = a \cdot a^{j-1}$. Since $1 \le i - 1 \le j$, we have that $a^{j-1} \ne 0$ and we were given that $a \neq 0$. Thus we have reached a contradiction to our hypothesis that Rwas an integral domain.

Thus $S = \emptyset$ and the lemma holds.

イロト イポト イラト イラト

Every finite integral domain is a field.

・ 母 と ・ ヨ と ・ ヨ と

æ

Every finite integral domain is a field.

Proof.

Suppose that R is a finite integral domain and $0 \neq a \in R$.

| 4 回 2 4 U = 2 4 U =

æ

Every finite integral domain is a field.

Proof.

Suppose that R is a finite integral domain and $0 \neq a \in R$. Consider the infinite sequence $\{a^k\}_{k \ge 1}$

同 と く ヨ と く ヨ と

Every finite integral domain is a field.

Proof.

Suppose that R is a finite integral domain and $0 \neq a \in R$. Consider the infinite sequence $\{a^k\}_{k\geq 1}$ Since R is finite the above sequence must repeat.

向下 イヨト イヨト
Every finite integral domain is a field.

Proof.

Suppose that *R* is a finite integral domain and $0 \neq a \in R$. Consider the infinite sequence $\{a^k\}_{k\geq 1}$ Since *R* is finite the above sequence must repeat. Thus there exists $i, j \in \mathbb{Z}$ with i > j such that $a^i = a^j$.

Every finite integral domain is a field.

Proof.

Suppose that *R* is a finite integral domain and $0 \neq a \in R$. Consider the infinite sequence $\{a^k\}_{k\geq 1}$ Since *R* is finite the above sequence must repeat. Thus there exists $i, j \in \mathbb{Z}$ with i > j such that $a^i = a^j$. Since (i - j) > 0, we have $0 = a^i - a^j =$

伺下 イヨト イヨト

Every finite integral domain is a field.

Proof.

Suppose that *R* is a finite integral domain and $0 \neq a \in R$. Consider the infinite sequence $\{a^k\}_{k\geq 1}$ Since *R* is finite the above sequence must repeat. Thus there exists $i, j \in \mathbb{Z}$ with i > j such that $a^i = a^j$. Since (i - j) > 0, we have $0 = a^i - a^j = a^j(a^{i-j} - 1)$.

向下 イヨト イヨト

Every finite integral domain is a field.

Proof.

Suppose that *R* is a finite integral domain and $0 \neq a \in R$. Consider the infinite sequence $\{a^k\}_{k\geq 1}$ Since *R* is finite the above sequence must repeat. Thus there exists $i, j \in \mathbb{Z}$ with i > j such that $a^i = a^j$. Since (i - j) > 0, we have $0 = a^i - a^j = a^j(a^{i-j} - 1)$. Since *R* is an integral domain and $a^j \neq 0$ by our lemma, we can conclude that $a^{i-j} = 1$

- 4 周 ト - 4 日 ト - 4 日 ト

Every finite integral domain is a field.

Proof.

Suppose that *R* is a finite integral domain and $0 \neq a \in R$. Consider the infinite sequence $\{a^k\}_{k\geq 1}$ Since *R* is finite the above sequence must repeat. Thus there exists $i, j \in \mathbb{Z}$ with i > j such that $a^i = a^j$. Since (i - j) > 0, we have $0 = a^i - a^j = a^j(a^{i-j} - 1)$. Since *R* is an integral domain and $a^j \neq 0$ by our lemma, we can conclude that $a^{i-j} = 1$ Thus, we have $a \cdot a^{i-j-1} = 1$. (Note: $i > j \Rightarrow i - j - 1 \ge 0$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Every finite integral domain is a field.

Proof.

Suppose that *R* is a finite integral domain and $0 \neq a \in R$. Consider the infinite sequence $\{a^k\}_{k \ge 1}$ Since *R* is finite the above sequence must repeat. Thus there exists $i, j \in \mathbb{Z}$ with i > j such that $a^i = a^j$. Since (i - j) > 0, we have $0 = a^i - a^j = a^j(a^{i-j} - 1)$. Since *R* is an integral domain and $a^j \neq 0$ by our lemma, we can conclude that $a^{i-j} = 1$ Thus, we have $a \cdot a^{i-j-1} = 1$. (Note: $i > j \Rightarrow i - j - 1 \ge 0$. Thus, $a^{i-j-1} = a^{-1}$.

Every finite integral domain is a field.

Proof.

Suppose that R is a finite integral domain and $0 \neq a \in R$. Consider the infinite sequence $\{a^k\}_{k>1}$ Since R is finite the above sequence must repeat. Thus there exists $i, j \in \mathbb{Z}$ with i > j such that $a^i = a^j$. Since (i - j) > 0, we have $0 = a^{i} - a^{j} = a^{j}(a^{i-j} - 1)$. Since R is an integral domain and $a^{j} \neq 0$ by our lemma, we can conclude that $a^{i-j} = 1$ Thus, we have $a \cdot a^{i-j-1} = 1$. (Note: $i > j \Rightarrow i - j - 1 \ge 0$. Thus, $a^{i-j-1} = a^{-1}$. So, we have shown that if $a \neq 0$, then a is a unit. Thus R is a field.

イロト イポト イヨト イヨト

DEFINITION

Suppose that R is a ring. A zero divisor in R is an element a satisfying:

1 $a \neq 0$.

2 There is an element $0 \neq b \in R$ such that either ab = 0 or ba = 0.

イロン イヨン イヨン イヨン

æ