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For R a ring and a € R, the equation a+ x = Or has a unique
solution.
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THEOREM

For R a ring and a € R, the equation a+ x = Or has a unique
solution.

PROOF.

Suppose that w and z are two solutions.
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THEOREM

For R a ring and a € R, the equation a+ x = Or has a unique
solution.

PROOF.

Suppose that w and z are two solutions.
Then w=w+0=

| A
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THEOREM

For R a ring and a € R, the equation a+ x = Or has a unique
solution.

| A

PROOF.

Suppose that w and z are two solutions.
Thenw=w+0=w+(a+2z)=
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THEOREM

For R a ring and a € R, the equation a+ x = Or has a unique
solution.

PROOF.

Suppose that w and z are two solutions.
Thenw=w+0=w+(a+2z)=(a+w)+z=

| A
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THEOREM

For R a ring and a € R, the equation a+ x = Or has a unique
solution.

PROOF.

Suppose that w and z are two solutions.
Thenw=w+0=w+(a+z)=(a+w)+z=0+z=2z. [

| A

v
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THEOREM
For R a ring and a € R, the equation a+ x = Og has a unique
solution.

PROOF.

Suppose that w and z are two solutions.
Thenw=w+0=w+(a+z)=(a+w)+z=0+z=2z. [

| A

DEFINITION

@ Given R, aring and a € R. We define —a to be the unique
solution in R to the equation a + x = 0.

| \

® In a ring R we define subtraction as a — b = a+ (—b).

A
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Suppose that R = Zs.
@ Since2+4=0, —2=4.

® S0, 5—2=5+4=3in Ze.
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If R is a ring then we know that addition and multiplication are
well-defined. It follows that

XxX=y=x+a=y+aand

X =y = xa=ya.
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NoTE

If R is a ring then we know that addition and multiplication are
well-defined. It follows that

XxX=y=x+a=y+aand

X =y = xa=ya.

| N

THEOREM
Suppose that R is a ring and a,b € R. Then
atx=aty=x=y.
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NOTE

If R is a ring then we know that addition and multiplication are
well-defined. It follows that

XxX=y=x+a=y+aand

X =y = xa=ya.

THEOREM
Suppose that R is a ring and a,b € R. Then
atx=aty=x=y.

| \

PROOF.
x=0+x=

| \

A\
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NOTE

If R is a ring then we know that addition and multiplication are
well-defined. It follows that

XxX=y=x+a=y+aand

X =y = xa=ya.

| \

THEOREM
Suppose that R is a ring and a,b € R. Then
atx=aty=x=y.

| \

PROOF.
x=0+x=(—-a+a)+x=

A\
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NOTE

If R is a ring then we know that addition and multiplication are
well-defined. It follows that

XxX=y=x+a=y+aand

X =y = xa=ya.

| \

THEOREM
Suppose that R is a ring and a,b € R. Then
atx=aty=x=y.

| \

PROOF.
x=0+x=(-at+a)+x=—a+(a+x)=

A\
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NOTE

If R is a ring then we know that addition and multiplication are
well-defined. It follows that

XxX=y=x+a=y+aand

X =y = xa=ya.

| \

THEOREM
Suppose that R is a ring and a,b € R. Then
atx=aty=x=y.

PROOF.
x=0+x=(-a+a)+x=—a+(a+x)= —a+(a+y)=

| \

A\
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NOTE

If R is a ring then we know that addition and multiplication are
well-defined. It follows that

XxX=y=x+a=y+aand

X =y = xa=ya.

THEOREM
Suppose that R is a ring and a,b € R. Then
atx=aty=x=y.

| \

| \

PROOF.
x=0+x=(-a+a)+x=—a+(a+x)= —a+(a+y)=
(—a+a)+y=

A\
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NOTE

If R is a ring then we know that addition and multiplication are
well-defined. It follows that

XxX=y=x+a=y+aand

X =y = xa=ya.

THEOREM
Suppose that R is a ring and a,b € R. Then
atx=aty=x=y.

| \

| \

PROOF.
x=0+x=(-a+a)+x=—a+(a+x)= —a+(a+y)=
(—a+a)+y=y. O

A\
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THEOREM

Suppose that R is a ring and a, b € R. Then,

® —(—a)=a
® —(a+b)=(—a)+(-b)
® (a—b)=—a+b=b—a

@ If R is a ring with identity then we also have (—1g)a = —a.

4
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DETECTING SUBRINGS

Let R be a ring and let ) # S C R such that
@ S is closed under subtraction.

® S is closed under multiplication.

Then S is a subring of R.

Kevin James MTHSC 412 Section 3.2 — Basic Properties of Rings



DEFINITION
Let R be a ring.

@ For any a € R we define nonnegative integral multiples by
0a = Og, la = a, (n+1)a=na+a (n>0).
Negative integral multiples are defined by

(—n)a = n(—a) n>0.
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DEFINITION
Let R be a ring.

@ For any a € R we define nonnegative integral multiples by
0a = Og, la = a, (n+1)a=na+a (n>0).
Negative integral multiples are defined by
(—n)a = n(—a) n>0.

® For any a € R we define nonnegative integral exponents as
follows. If R has an identity then a° = 1g. In any case,

1 n+1

a =a, a" =a"a n>0.

If a has a multiplicative inverse, negative integral exponents
are defined by

a "= (a1)" n > 0.
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THEOREM (LAwWS OF MULTIPLES)

Suppose that R is a ring and that a,b € R, and m,n € Z. Then,
® na+(—n)a=0,
® ma+ na=(m+ n)a,
® n(ma) = (nm)a, and
® n(a+ b) = na+ nb.
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THEOREM (LAwWS OF MULTIPLES)

Suppose that R is a ring and that a,b € R, and m,n € Z. Then,
® na+(—n)a=0,
® ma+ na=(m+ n)a,
® n(ma) = (nm)a, and
® n(a+ b) = na+ nb.

THEOREM (LAWS OF EXPONENTS)

Suppose that R is a ring a,b € R, and m,n € Z. Then,
@ If a is invertible, then a" - a~ " = e,
(2) am. g = am—i—n,
® (a™)" =am", and
® If R is commutative then (ab)" = a"b".
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Let R be a ring and let a,b € R. The equation a+ x = b has the
unique solution x = b — a.
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Let R be a ring and let a,b € R. The equation a+ x = b has the
unique solution x = b — a.

(Existence): We note that
at+(b—a)=a+((—a)+b)=(a+(—a))+b=0+b=b.
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Let R be a ring and let a,b € R. The equation a+ x = b has the
unique solution x = b — a.

(Existence): We note that
at+(b—a)=a+((—a)+b)=(a+(—a))+b=0+b=b.
Thus x = b — a is a solution.
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Let R be a ring and let a,b € R. The equation a4+ x = b has the
unique solution x = b — a.

(Existence): We note that
at+(b—a)=a+((-a)+b)=(a+(-a)+b=0+b=0b.
Thus x = b — a is a solution.

(Uniqueness): Suppose that w is another solution.
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Let R be a ring and let a,b € R. The equation a4+ x = b has the
unique solution x = b — a.

(Existence): We note that
at+(b—a)=a+((-a)+b)=(a+(-a)+b=0+b=0b.
Thus x = b — a is a solution.

(Uniqueness): Suppose that w is another solution.

Then we have a+x=a+w = x=w. []
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Suppose that R is a ring with identity and that a€ R. If ax =1
and ya = 1 both have solutions, say u and v respectively, then we
have
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Suppose that R is a ring with identity and that a€ R. If ax =1

and ya = 1 both have solutions, say u and v respectively, then we
have

u=1-u=
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Suppose that R is a ring with identity and that a€ R. If ax =1

and ya = 1 both have solutions, say u and v respectively, then we
have

u=1 u=(va)u=
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Suppose that R is a ring with identity and that a€ R. If ax =1

and ya = 1 both have solutions, say u and v respectively, then we
have

u=1-u=(vaju=v(au)=v-1
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Suppose that R is a ring with identity and that a€ R. If ax =1

and ya = 1 both have solutions, say u and v respectively, then we
have

u=1l-u=(vaju=v(au)=v-1=v.
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NOTE

Suppose that R is a ring with identity and that a € R. If ax =1
and ya = 1 both have solutions, say u and v respectively, then we
have

u=1l-u=(vaju=v(au)=v-1=v.

DEFINITION

Suppose that R is a ring with identity and that a € R. If there

exists u € R such that au = 1g = va then we say that a is a unit

and that v is the multiplicative inverse of a and we write u = a~ L.

| A
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® In Z1g, 7 is a unit and in fact 77! = 3.

® In Zqg, 2 is not a unit.
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a, b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R. )

| A\
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a,b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

| A

PROOF.

(Existence): Since a is a unit, there is an element ¢ € R such that
ac=ca=1.

| \

A\
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a,b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

| A

| \

PROOF.
(Existence): Since a is a unit, there is an element ¢ € R such that

ac=ca=1.
Thus, a(cb) = (ac)b=1-b=b. and (bc)a= b(ca) =b-1=b.

A\
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a,b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

| A

| \

PROOF.

(Existence): Since a is a unit, there is an element ¢ € R such that
ac=ca=1.

Thus, a(cb) = (ac)b=1-b=b. and (bc)a= b(ca) =b-1=b.
Thus x = cb and y = bc are solutions.

A\
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a,b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

| A

PROOF.

(Existence): Since a is a unit, there is an element ¢ € R such that
ac=ca=1.

Thus, a(cb) = (ac)b=1-b=b. and (bc)a= b(ca) =b-1=b.
Thus x = cb and y = bc are solutions.

(Uniqueness): Suppose that u and v are both solutions to ax = b.

A\
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a,b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

| A

PROOF.

(Existence): Since a is a unit, there is an element ¢ € R such that
ac=ca=1.

Thus, a(cb) = (ac)b=1-b=b. and (bc)a= b(ca) =b-1=b.
Thus x = cb and y = bc are solutions.

(Uniqueness): Suppose that u and v are both solutions to ax = b.
Then au = av =

A\
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a,b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

| A

PROOF.

(Existence): Since a is a unit, there is an element ¢ € R such that
ac=ca=1.

Thus, a(cb) = (ac)b=1-b=b. and (bc)a= b(ca) =b-1=b.
Thus x = cb and y = bc are solutions.

(Uniqueness): Suppose that u and v are both solutions to ax = b.
Then au = av = c(au) = c(av) =

A\
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a,b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

PROOF.

(Existence): Since a is a unit, there is an element ¢ € R such that
ac=ca=1.

Thus, a(cb) = (ac)b=1-b=b. and (bc)a= b(ca) =b-1=b.
Thus x = cb and y = bc are solutions.

(Uniqueness): Suppose that u and v are both solutions to ax = b.
Then au = av = c(au) = c(av) = (ca)u = (ca)v =

| \

A\
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a,b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

| \

PROOF.

(Existence): Since a is a unit, there is an element ¢ € R such that
ac=ca=1.

Thus, a(cb) = (ac)b=1-b=b. and (bc)a= b(ca) =b-1=b.
Thus x = cb and y = bc are solutions.

(Uniqueness): Suppose that u and v are both solutions to ax = b.
Then au = av = c(au) = c(av) = (ca)u = (ca)v = u = v.

A\
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EXAMPLE

® In Z1g, 7 is a unit and in fact 77! = 3.
® In Zqg, 2 is not a unit.

THEOREM

Suppose that R is a ring with identity and that a,b € R with a a
unit. Then the equations ax = b and ya = b have a unique
solution in R.

| A

PROOF.

(Existence): Since a is a unit, there is an element ¢ € R such that
ac=ca=1.

Thus, a(cb) = (ac)b=1-b=b. and (bc)a= b(ca) =b-1=b.
Thus x = cb and y = bc are solutions.

(Uniqueness): Suppose that u and v are both solutions to ax = b.
Then au = av = c(au) = c(av) = (ca)u = (ca)v = u = v.

The proof in the other case is similar. O

A\
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FIELDS ARE INTEGRAL DOMAINS

Every field F is an integral domain. I
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FIELDS ARE INTEGRAL DOMAINS

Every field F is an integral domain. \

Suppose that F is a field and that a, b € F with ab =0 and a # 0.
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FIELDS ARE INTEGRAL DOMAINS

Every field F is an integral domain. \

Suppose that F is a field and that a, b € F with ab =0 and a # 0.
Since, 0 # a € F, a is a unit.
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FIELDS ARE INTEGRAL DOMAINS

Every field F is an integral domain. \

Suppose that F is a field and that a, b € F with ab =0 and a # 0.
Since, 0 # a € F, a is a unit.
So,b=1-b=
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FIELDS ARE INTEGRAL DOMAINS

Every field F is an integral domain. \

Suppose that F is a field and that a, b € F with ab =0 and a # 0.
Since, 0 # a € F, a is a unit.
So,b=1-b=(ata)b=
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FIELDS ARE INTEGRAL DOMAINS

Every field F is an integral domain. \

Suppose that F is a field and that a, b € F with ab =0 and a # 0.
Since, 0 # a € F, a is a unit.
So,b=1-b=(ata)b=a"1(ab) =
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FIELDS ARE INTEGRAL DOMAINS

Every field F is an integral domain. \

Suppose that F is a field and that a, b € F with ab =0 and a # 0.
Since, 0 # a € F, a is a unit.
So,b=1-b=(ata)b=al(ab)=a1-0=0. O
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CANCELLATION LAw

Suppose that R is an integral domain and that 0 £ a € R. Then
ax=ay=>x=y.
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CANCELLATION LAw

Suppose that R is an integral domain and that 0 £ a € R. Then
ax=ay=>x=y.

Suppose that 0 £ a € R and that R is an integral domain.
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CANCELLATION LAw

Suppose that R is an integral domain and that 0 £ a € R. Then
ax=ay=>x=y.

Suppose that 0 £ a € R and that R is an integral domain.
Then we have ax = ay =
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CANCELLATION LAw

Suppose that R is an integral domain and that 0 £ a € R. Then
ax=ay=>x=y.

Suppose that 0 £ a € R and that R is an integral domain.
Then we have ax = ay = ax —ay = 0=
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CANCELLATION LAw

Suppose that R is an integral domain and that 0 £ a € R. Then
ax=ay=>x=y.

Suppose that 0 £ a € R and that R is an integral domain.
Then we have ax = ay = ax —ay = 0= a(x —y) =0.
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CANCELLATION LAw

Suppose that R is an integral domain and that 0 £ a € R. Then
ax=ay=>x=y.

Suppose that 0 £ a € R and that R is an integral domain.
Then we have ax = ay = ax —ay = 0= a(x —y) =0.
Since a # 0 and R is an integral domain, we conclude that

X =Y. []
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If R is an integral domain and 0 # a € R and 0 < k € Z then
k
a“ #£0.
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LEMMA

If R is an integral domain and 0 # a € R and 0 < k € Z then
ak #0.

PROOF.

Suppose that 0 # a € R.

N,
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LEMMA

If R is an integral domain and 0 # a € R and 0 < k € Z then
ak #0.

PROOF.

Suppose that 0 # a € R.
Let S={k€Z]| k>0;ak=0}.

| \

N,
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If R is an integral domain and 0 # a € R and 0 < k € Z then
ak #0.

| \

PRrROOF.

Suppose that 0 # a € R.

Let S={k€Z]| k>0;ak=0}.

Assume for the sake of contradiction that S # ().

N,
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If R is an integral domain and 0 # a € R and 0 < k € Z then
ak #0.

| \

PRrROOF.

Suppose that 0 # a € R.

Let S={k€Z]| k>0;ak=0}.

Assume for the sake of contradiction that S # ().

If this is true then by the well ordering principle, there is a smallest
element, say j € S.

N,
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LEMMA

If R is an integral domain and 0 # a € R and 0 < k € Z then
ak #0.

| \

PRrROOF.

Suppose that 0 # a € R.

Let S={k€Z]| k>0;ak=0}.

Assume for the sake of contradiction that S # ().

If this is true then by the well ordering principle, there is a smallest
element, say j € S.

Note that 0 £ a = a'. Thus j > 2.

N,
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LEMMA

If R is an integral domain and 0 # a € R and 0 < k € Z then
ak #0.

PROOF.

Suppose that 0 # a € R.

Let S={k€Z]| k>0;ak=0}.

Assume for the sake of contradiction that S # ().

If this is true then by the well ordering principle, there is a smallest
element, say j € S.

Note that 0 £ a = a'. Thus j > 2.

Now we have 0 = &/ = a- a2/~ L.

| \

N,
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LEMMA

If R is an integral domain and 0 # a € R and 0 < k € Z then
ak #0.

| \

PRrROOF.

Suppose that 0 # a € R.

Let S={k€Z]| k>0;ak=0}.

Assume for the sake of contradiction that S # ().

If this is true then by the well ordering principle, there is a smallest
element, say j € S.

Note that 0 £ a = a'. Thus j > 2.

Now we have 0 = &/ = a- a2/~ L.

Since 1 < j —1 < j, we have that 2! # 0 and we were given that

a#0.

N,
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LEMMA

If R is an integral domain and 0 # a € R and 0 < k € Z then
ak #0.

| \

PRrROOF.

Suppose that 0 # a € R.

Let S={k€Z]| k>0;ak=0}.

Assume for the sake of contradiction that S # ().

If this is true then by the well ordering principle, there is a smallest
element, say j € S.

Note that 0 £ a = a'. Thus j > 2.

Now we have 0 = &/ = a- a2/~ L.

Since 1 < j —1 < j, we have that 2! # 0 and we were given that
a#0.

Thus we have reached a contradiction to our hypothesis that R
was an integral domain.

N,
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If R is an integral domain and 0 # a € R and 0 < k € Z then
ak #0.

| \

PRrROOF.

Suppose that 0 # a € R.

Let S={k€Z]| k>0;ak=0}.

Assume for the sake of contradiction that S # ().

If this is true then by the well ordering principle, there is a smallest
element, say j € S.

Note that 0 £ a = a'. Thus j > 2.

Now we have 0 = &/ = a- a2/~ L.

Since 1 < j —1 < j, we have that 2! # 0 and we were given that
a#0.

Thus we have reached a contradiction to our hypothesis that R
was an integral domain.

Thus S = () and the lemma holds. O

N,
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Every finite integral domain is a field.
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Every finite integral domain is a field.

PROOF.

Suppose that R is a finite integral domain and 0 # a € R.
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Every finite integral domain is a field.

PROOF.

Suppose that R is a finite integral domain and 0 # a € R.
Consider the infinite sequence {a*},>1

Kevin James MTHSC 412 Section 3.2 — Basic Properties of Rings



Every finite integral domain is a field.

PRrROOF.

Suppose that R is a finite integral domain and 0 # a € R.
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Consider the infinite sequence {a*},>1

Since R is finite the above sequence must repeat.

Thus there exists i, j € Z with i > j such that a' = &/
Since (i —j) >0, we have 0 = a' — a/ =
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Suppose that R is a finite integral domain and 0 # a € R.
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Since R is finite the above sequence must repeat.

Thus there exists i, j € Z with i > j such that a' = &/
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Consider the infinite sequence {a*},>1

Since R is finite the above sequence must repeat.

Thus there exists i, j € Z with i > j such that a' = &/

Since (i —j) >0, wehave 0 = a' — & = al(a' 7 — 1).

Since R is an integral domain and & # 0 by our lemma, we can
conclude that '/ =1
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PROOF.

Suppose that R is a finite integral domain and 0 # a € R.
Consider the infinite sequence {a*},>1

Since R is finite the above sequence must repeat.

Thus there exists i, j € Z with i > j such that a' = &/

Since (i —j) >0, we have 0 = 2 — a/ = a/(a’ 7/ — 1).

Since R is an integral domain and & # 0 by our lemma, we can
conclude that '/ =1

Thus, we have a-a' 71 =1. (Note: i >j=i—j—1>0.
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PROOF.

Suppose that R is a finite integral domain and 0 # a € R.
Consider the infinite sequence {a*},>1

Since R is finite the above sequence must repeat.

Thus there exists i, j € Z with i > j such that a' = &/

Since (i —j) >0, we have 0 = 2 — a/ = a/(a’ 7/ — 1).

Since R is an integral domain and & # 0 by our lemma, we can
conclude that a7 =1

Thus, we have a-a' 71 =1. (Note: i >j=i—j—1>0.
Thus, a8 /=1 = a1
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Every finite integral domain is a field.

PROOF.

Suppose that R is a finite integral domain and 0 # a € R.
Consider the infinite sequence {a*},>1

Since R is finite the above sequence must repeat.

Thus there exists i, j € Z with i > j such that a' = &/

Since (i —j) >0, we have 0 = 2 — a/ = a/(a’ 7/ — 1).

Since R is an integral domain and & # 0 by our lemma, we can
conclude that a7 =1

Thus, we have a-a' 71 =1. (Note: i >j=i—j—1>0.
Thus, a8 /=1 = a1

So, we have shown that if a # 0, then a is a unit. Thus R is a
field. O

<
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DEFINITION

Suppose that R is a ring. A zero divisor in R is an element a
satisfying:
@ a#0.
® There is an element 0 # b € R such that either ab =0 or
ba = 0.
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