MTHSC 412 Section 3.3 – Isomorphisms and Homomorphisms

Kevin James

Kevin James MTHSC 412 Section 3.3 – Isomorphisms and Homomorphisms

▲圖▶ ★ 国▶ ★ 国▶

Consider the set $S = \{0, 2, 4, 6, 8\} \subseteq \mathbb{Z}_{10}$. Its addition and multiplication tables are below.

Note

1 S is a subring of \mathbb{Z}_{10} . It is commutative and has an identity.

イロン 不同と 不同と 不同と

Consider the set $S = \{0, 2, 4, 6, 8\} \subseteq \mathbb{Z}_{10}$. Its addition and multiplication tables are below.

+	0	2	4	6	8	×	0	2	4	6	8
0	0	2	4	6	8	0	0	0	0	0	0
2	2	4	6	8	0	2	0	4	8	2	6
4	4	6	8	0	2	4	0	8	6	4	2
6	6	8	0	2	4	6	0	2	4	6	8
8	8	0	2	4	6	8	0	6	2	8	4

Note

S is a subring of Z₁₀. It is commutative and has an identity.
In fact, S is even a field.

・ロト ・回ト ・ヨト ・ヨト

Consider the set $S = \{0, 2, 4, 6, 8\} \subseteq \mathbb{Z}_{10}$. Its addition and multiplication tables are below.

+	0	2	4	6	8	×	0	2	4	6	8
0	0	2	4	6	8	0	0	0	0	0	0
2	2	4	6	8	0	2	0	4	8	2	6
4	4	6	8	0	2	4	0	8	6	4	2
6	6	8	0	2	4	6	0	2	4	6	8
8	8	0	2	4	6	8	0	6	2	8	4

Note

- **()** S is a subring of \mathbb{Z}_{10} . It is commutative and has an identity.
- 2 In fact, S is even a field.
- **3** Have you seen this field before?

・ロン ・回と ・ヨン ・ヨン

Consider the set $S = \{0, 2, 4, 6, 8\} \subseteq \mathbb{Z}_{10}$. Its addition and multiplication tables are below.

+	0	2	4	6	8	×	0	2	4	6	8
0	0	2	4	6	8	0	0	0	0	0	0
2	2	4	6	8	0	2	0	4	8	2	6
4	4	6	8	0	2	4	0	8	6	4	2
6	6	8	0	2	4	6	0	2	4	6	8
8	8	0	2	4	6	8	0	6	2	8	4

Note

- **1** S is a subring of \mathbb{Z}_{10} . It is commutative and has an identity.
- 2 In fact, S is even a field.
- 3 Have you seen this field before?
- 4 It "looks like" \mathbb{Z}_5 .

・ロン ・回と ・ヨン ・ヨン

We can define a map $\phi : S \to \mathbb{Z}_5$ by $\phi(x) = [x]_5$. This map has the inverse map $\psi : \mathbb{Z}_5 \to S$ given by $\psi(y) = [6y]_{10}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

We can define a map $\phi : S \to \mathbb{Z}_5$ by $\phi(x) = [x]_5$. This map has the inverse map $\psi : \mathbb{Z}_5 \to S$ given by $\psi(y) = [6y]_{10}$.

Note

1 ϕ is 1-1 and onto.

We can define a map $\phi : S \to \mathbb{Z}_5$ by $\phi(x) = [x]_5$. This map has the inverse map $\psi : \mathbb{Z}_5 \to S$ given by $\psi(y) = [6y]_{10}$.

Note

- **1** ϕ is 1-1 and onto.
- So, we can think of \u03c6 as a relabeling of the members of S provided that this relabeling preserves our addition and multiplication tables.

(日) (同) (E) (E) (E)

We can define a map $\phi : S \to \mathbb{Z}_5$ by $\phi(x) = [x]_5$. This map has the inverse map $\psi : \mathbb{Z}_5 \to S$ given by $\psi(y) = [6y]_{10}$.

Note

- 1) ϕ is 1-1 and onto.
- So, we can think of \u03c6 as a relabeling of the members of S provided that this relabeling preserves our addition and multiplication tables.

3
$$\phi(a+b) = \phi(a) + \phi(b)$$
.

(日) (同) (E) (E) (E)

We can define a map $\phi : S \to \mathbb{Z}_5$ by $\phi(x) = [x]_5$. This map has the inverse map $\psi : \mathbb{Z}_5 \to S$ given by $\psi(y) = [6y]_{10}$.

Note

- **1** ϕ is 1-1 and onto.
- So, we can think of \u03c6 as a relabeling of the members of S provided that this relabeling preserves our addition and multiplication tables.
- **3** $\phi(a+b) = \phi(a) + \phi(b)$.

(日) (同) (E) (E) (E)

Suppose that R and S are rings. We say that a map $\phi : R \to S$ is an isomorphism of rings if the following hold.

1
$$\phi$$
 is bijective (-i.e. 1-1 and onto).

$$(a+b) = \phi(a) + \phi(b).$$

In the case that there is an isomorphism $\phi : R \to S$, we say that R and S are isomorphic and write $R \cong S$.

・ 同・ ・ ヨ・

Suppose that R and S are rings. We say that a map $\phi : R \to S$ is an isomorphism of rings if the following hold.

1
$$\phi$$
 is bijective (-i.e. 1-1 and onto).

$$2 \phi(a+b) = \phi(a) + \phi(b).$$

In the case that there is an isomorphism $\phi : R \to S$, we say that R and S are isomorphic and write $R \cong S$.

EXAMPLE

Show that complex conjugation is a ring isomorphism from $\ensuremath{\mathbb{C}}$ to itself.

▲ □ ► ▲ □ ►

Suppose that R and S are rings. We say that a map $\phi : R \to S$ is a ring homomorphism if the following hold.

1
$$\phi(a+b) = \phi(a) + \phi(b)$$
.

$$(ab) = \phi(a)\phi(b).$$

Suppose that R and S are rings. We say that a map $\phi : R \to S$ is a ring homomorphism if the following hold.

1
$$\phi(a+b) = \phi(a) + \phi(b)$$
.

$$2 \phi(ab) = \phi(a)\phi(b).$$

EXAMPLE

Define $f : \mathbb{Z} \to \mathbb{Z}_5$ by f(x) = [x]. Show that f is a homomorphism of rings.

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem

Suppose that $f : R \rightarrow S$ is a ring homomorphism. Then,

- 1 $f(0_R) = 0_S$.
- 2) f(-a) = -f(a).

8
$$f(a-b) = f(a) - f(b)$$
.

- (a) If R is a ring with identity and f is surjective then S is a ring with identity and $f(1_R) = 1_S$.
- **6** If R, S and f are as above and $u \in R$ is a unit then f(u) is a unit also and $f(u)^{-1} = f(u^{-1})$.

Suppose that $f : R \to S$ is a function. We define the image of f as

 $\operatorname{im}(f) = \{f(r) : r \in R\}.$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Suppose that $f : R \rightarrow S$ is a function. We define the image of f as

$$\operatorname{im}(f) = \{f(r) : r \in R\}.$$

Note

A function $f : R \to S$ is surjective (onto) if and only if im(f) = S.

イロト イヨト イヨト イヨト

COROLLARY

Suppose that $f : R \to S$ is a ring homomorphism. Then im(f) is a subring of S.

- - 4 回 ト - 4 回 ト

Are there isomorphisms from \mathbb{Z}_{15} to $\mathbb{Z}_5\times\mathbb{Z}_3?$ Can you characterize all such maps?

イロト イヨト イヨト イヨト

Are there isomorphisms from \mathbb{Z}_{15} to $\mathbb{Z}_5\times\mathbb{Z}_3?$ Can you characterize all such maps?

EXAMPLE

Show that there are no isomorphisms from R to S when R and S are chosen below.

R = Z and S = Z₆.
R = Z₆ and S = Z.
R = Z₉ and S = Z₃ × Z₃.
R = Q and S = Z.

Are there isomorphisms from \mathbb{Z}_{15} to $\mathbb{Z}_5\times\mathbb{Z}_3?$ Can you characterize all such maps?

EXAMPLE

Show that there are no isomorphisms from R to S when R and S are chosen below.

R = Z and S = Z₆.
R = Z₆ and S = Z.
R = Z₉ and S = Z₃ × Z₃.
R = Q and S = Z.

Fact

Suppose that $R \cong S$. If R is commutative then so is S.

イロト イポト イヨト イヨト